亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? mysvm.htm

?? 做回歸很好
?? HTM
?? 第 1 頁 / 共 2 頁
字號:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0048)http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/ -->
<!-- header mySVM --><HTML><HEAD><TITLE>mySVM</TITLE>
<META content="text/html; charset=gb2312" http-equiv=Content-Type>
<META content="MSHTML 5.00.2920.0" name=GENERATOR></HEAD>
<BODY bgColor=#ffffff><A name=top></A><!--- Header table --->
<TABLE bgColor=#eeeeee border=0 cellPadding=0 cellSpacing=0 width="100%">
  <COLGROUP>
  <COL width="20%">
  <COL width="70%">
  <COL width="10%"></COLGROUP>
  <TBODY>
  <TR>
    <TD rowSpan=2 width="20%"><A 
      href="http://www-ai.cs.uni-dortmund.de/logo.html"><IMG border=0 
      src="mySVM.files/eier_graybg.gif"></A></TD>
    <TD bgColor=#99cdff width="70%"><A href="http://www.uni-dortmund.de/" 
      target=_top><IMG alt="University of Dortmund" border=0 
      src="mySVM.files/balken_le.gif"></A></TD>
    <TD align=right bgColor=#eeeeee width="10%"><A 
      href="http://www.uni-dortmund.de/" target=_top><IMG alt=UniDo-Logo 
      border=0 src="mySVM.files/balken_ro.gif"></A></TD></TR>
  <TR>
    <TD><A href="http://www.cs.uni-dortmund.de/" target=_top><IMG 
      alt="Computer Science" border=0 src="mySVM.files/cs.gif"></A> <A 
      href="http://www-ai.cs.uni-dortmund.de/" target=_top><IMG 
      alt="Artificial Intelligence" border=0 src="mySVM.files/ai.gif"></A></TD>
    <TD align=right vAlign=top><A href="http://www.uni-dortmund.de/" 
      target=_top><IMG alt=UniDo-Logo border=0 
      src="mySVM.files/balken_ru.gif"></A></TD></TR>
  <TR>
    <TD bgColor=#eeeeee colSpan=3 height=5>&nbsp;<!--- spacer trick --></TD></TR><!--- XX button row -->
  <TR>
    <TD bgColor=#99cdff colSpan=2 height=25 noWrap vAlign=bottom><A 
      href="http://www-ai.cs.uni-dortmund.de/index.eng.html" 
      onmousedown="imgClick('img_ls8news'); return true" 
      onmouseout="imgNormal('img_ls8news'); return true" 
      onmouseover="imgOver('img_ls8news'); return true"><IMG alt="LS8 News" 
      border=0 height=25 name=img_ls8news src="mySVM.files/ls8news.gif" 
      width=77></A> &nbsp; <A 
      href="http://www-ai.cs.uni-dortmund.de/FORSCHUNG/index.eng.html" 
      onmousedown="imgClick('img_forschung'); return true" 
      onmouseout="imgNormal('img_forschung'); return true" 
      onmouseover="imgOver('img_forschung'); return true"><IMG alt=Research 
      border=0 height=25 name=img_forschung src="mySVM.files/forschung.eng.gif" 
      width=82></A><A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/index.eng.html" 
      onmousedown="imgClick('img_software'); return true" 
      onmouseout="imgNormal('img_software'); return true" 
      onmouseover="imgOver('img_software'); return true"><IMG alt=Software 
      border=0 height=25 name=img_software src="mySVM.files/software.gif" 
      width=83></A><A 
      href="http://www-ai.cs.uni-dortmund.de/PARTNER/index.eng.html" 
      onmousedown="imgClick('img_partner'); return true" 
      onmouseout="imgNormal('img_partner'); return true" 
      onmouseover="imgOver('img_partner'); return true"><IMG alt=Partner 
      border=0 height=25 name=img_partner src="mySVM.files/partner.gif" 
      width=73></A> &nbsp; <A 
      href="http://www-ai.cs.uni-dortmund.de/LEHRE/lehre.html" 
      onmousedown="imgClick('img_lehre'); return true" 
      onmouseout="imgNormal('img_lehre'); return true" 
      onmouseover="imgOver('img_lehre'); return true"><IMG alt=Teaching border=0 
      height=25 name=img_lehre src="mySVM.files/lehre.eng.gif" width=79></A> 
      &nbsp; <A 
      href="http://www-ai.cs.uni-dortmund.de/PERSONAL/personal.eng.html" 
      onmousedown="imgClick('img_personal'); return true" 
      onmouseout="imgNormal('img_personal'); return true" 
      onmouseover="imgOver('img_personal'); return true"><IMG alt=Staff border=0 
      height=25 name=img_personal src="mySVM.files/personal.eng.gif" 
      width=54></A><A 
      href="http://www-ai.cs.uni-dortmund.de/UNIVERSELL/index.eng.html" 
      onmousedown="imgClick('img_allgemein'); return true" 
      onmouseout="imgNormal('img_allgemein'); return true" 
      onmouseover="imgOver('img_allgemein'); return true"><IMG alt=General 
      border=0 height=25 name=img_allgemein src="mySVM.files/allgemein.eng.gif" 
      width=74></A><A href="http://www-ai.cs.uni-dortmund.de/INTERN/intern.html" 
      onmousedown="imgClick('img_intern'); return true" 
      onmouseout="imgNormal('img_intern'); return true" 
      onmouseover="imgOver('img_intern'); return true"><IMG alt=Internal 
      border=0 height=25 name=img_intern src="mySVM.files/intern.eng.gif" 
      width=85></A></TD>
    <TD align=right bgColor=#99cdff height=25 noWrap vAlign=bottom><A 
      href="http://www-ai.cs.uni-dortmund.de/Harvest/brokers/www-ai/query.eng.html" 
      onmousedown="imgClick('img_search'); return true" 
      onmouseout="imgNormal('img_search'); return true" 
      onmouseover="imgOver('img_search'); return true"><IMG alt=Search border=0 
      height=25 name=img_search src="mySVM.files/search.gif" width=30></A><A 
      href="mailto:webadmin@ls8.cs.uni-dortmund.de" 
      onmousedown="imgClick('img_mail'); return true" 
      onmouseout="imgNormal('img_mail'); return true" 
      onmouseover="imgOver('img_mail'); return true"><IMG 
      alt="Send email to webadmin@ls8.cs.uni-dortmund.de" border=0 height=25 
      name=img_mail src="mySVM.files/mail.gif" width=38></A><IMG alt="no german" 
      border=0 height=25 src="mySVM.files/no_deutsch.gif" 
width=32></TD></TR></TBODY></TABLE>
<SCRIPT language=JavaScript src="mySVM.files/buttons.eng.js" 
type=text/javascript></SCRIPT>
<!--- Body table -->
<TABLE width="100%">
  <TBODY>
  <TR>
    <TD colSpan=3><FONT size=1>&nbsp;</FONT></TD></TR>
  <TR>
    <TD>&nbsp;&nbsp;</TD>
    <TD>
      <H1>mySVM</H1><!-- /header -->
      <CENTER>
      <H1>mySVM - a support vector machine</H1>by <A 
      href="http://www-ai.cs.uni-dortmund.de/PERSONAL/rueping.html">Stefan 
      Rüping</A>, <A 
      href="mailto:rueping@ls8.cs.uni-dortmund.de">rueping@ls8.cs.uni-dortmund.de</A> 
      </CENTER>
      <H2>News </H2>
      <UL>
        <LI>Download the latest release of <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mySVM-latest.tar.gz">mySVM</A> 
        (Version 2.1.1, November 7th, 2001) 
        <LI>Download the <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mySVM-latest-bin.zip">binary 
        version for Windows</A> 
        <LI>See a <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/changes.eng.html">list 
        of changes</A> </LI></UL>
      <H2>About mySVM </H2>mySVM is an implementation of the Support Vector 
      Machine introduced by V. Vapnik (see <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#Vapnik/98a">[Vapnik/98a]</A>). 
      It is based on the optimization algorithm of <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/SVM_LIGHT/svm_light.eng.html">SVM<I><SUP>light</SUP></I></A> 
      as described in <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#Joachims/99a">[Joachims/99a]</A>. 
      mySVM can be used for pattern recognition, regression and distribution 
      estimation. 
      <H2>License </H2>This software is free only for non-commercial use. It 
      must not be modified and distributed without prior permission of the 
      author. The author is not responsible for implications from the use of 
      this software. 
      <P>If you are using mySVM for research purposes, please cite the software 
      manual available from this cite in your publications (Stefan Rüping 
      (2000): <EM>mySVM-Manual</EM>, University of Dortmund, Lehrstuhl 
      Informatik 8, http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/). 
      <H2>Installation </H2>
      <H3>Installation under Unix</H3>
      <UL>
        <LI>Download <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mySVM-latest.tar.gz">mySVM</A>. 

        <LI>Create a new directory, change into it and unpack the files into 
        this directory 
        <LI>On typical UN*X systems simply type <TT>make</TT> to compile mySVM. 
        On other systems you have to call your C++ compiler manually. </LI></UL>If 
      everything went right you should have a new subdirectory named 
      <TT>bin</TT> and to files <TT>mysvm</TT> and <TT>predict</TT> in a 
      subdirectory thereof. On some systems you might get an error message about 
      <TT>sys/times.h</TT>. If you do, open the file <TT>globals.h</TT> and 
      uncomment the line <TT>#undef use_time</TT>. 
      <H3>Installation under Windows</H3>If you get the <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mySVM-latest.tar.gz">source 
      code</A> version, you have to compile mySVM youself. First edit the file 
      <EM>globals.h</EM> and uncomment the line <TT>#define windows 1</TT>. 
      Compile the file <EM>learn.cpp</EM> to get the learning program and 
      <EM>predict.cpp</EM> for the model application program. mySVM was tested 
      under Visual C++ 6.0. You can also get the <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mySVM-latest-bin.zip">binary 
      version</A>. <A name=usage>
      <H2>Using mySVM </H2></A>For a complete reference of mySVM have a look 
      into the mySVM manual (<A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mysvm-manual.ps">Postscript</A>, 
      <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mysvm-manual.pdf">PDF</A>). 
      Here is a short users guide: 
      <UL>
        <LI><TT>mysvm</TT> is used for training a SVM on a given example set and 
        testing the results 
        <LI><TT>predict</TT> is used for predicting the functional value of new 
        examples based on an already trained SVM. </LI></UL>The input of mySVM 
      consists of 
      <UL>
        <LI>a <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#paramdef">parameter 
        definition</A> 
        <LI>a <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#kerneldef">kernel 
        definition</A> 
        <LI>one or more <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#exampledef">example 
        sets</A> </LI></UL>Input lines starting with "#" are treated as 
      commentary. The input can be given in one or more files. If no filenames 
      or the filename "-" are given, the input is read from stdin. 
      <TT>mysvm</TT> trains a SVM on the first given example set. The following 
      example sets are used for testing (if their classification is given) or 
      the functional value of the examples is being computed (if no 
      classification is given). <A name=paramdef>
      <H3>Parameter definition</H3></A>The parameter definition lets the user 
      choose the type of loss function, the optimizer parameters and the 
      training algorithm to use. The parameter definition starts with the line 
      <TT>@parameters</TT>. 
      <H4>Global parameters:</H4>
      <TABLE border=1>
        <TBODY>
        <TR>
          <TD>pattern</TD>
          <TD>use SVM for pattern recognition</TD></TR>
        <TR>
          <TD>regression</TD>
          <TD>use regression SVM <EM>(default)</EM></TD></TR>
        <TR>
          <TD>nu <EM>float</EM></TD>
          <TD>use nu-SVM with the given value of nu instead of normal SVM (see 
            <A 
            href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#Schoelkopf/etal/2000a">[Schoelkopf/etal/2000a]</A> 
            for details on nu-SVMs). 
        <TR>
          <TD>distribution</TD>
          <TD>estimate the support of the distribution of the training 
            examples (see <A 
            href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#schoelkopf/etal/99a">[Schoelkopf/etal/99a]</A>). 
            Nu must be set! 
        <TR>
          <TD>verbosity [1..5]</TD>
          <TD>ranges from 1 (no messages) over 3 (default) to 5 (flood, for 
            debugging only) </TD></TR>
        <TR>
          <TD>scale</TD>
          <TD>scale the training examples to mean 0 and variance 1 
        (default)</TD></TR>
        <TR>
          <TD>no_scale</TD>
          <TD>do not scale the training examples (may be numerically less 
            stable!)</TD></TR>
        <TR>
          <TD>format</TD>
          <TD>set the default example file format. See the description <A 
            href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#exampledef">here</A>.</TD></TR>
        <TR>
          <TD>delimiter</TD>
          <TD>set the default example file format. See the description <A 
            href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#exampledef">here</A>.</TD></TR></TBODY></TABLE>
      <H4>Loss function:</H4>
      <TABLE border=1>
        <TBODY>
        <TR>
          <TD>C <EM>float</EM></TD>
          <TD>the SVM complexity constant (Note: C will be scaled by 1 / 
            number of training examples).</TD></TR>
        <TR>
          <TD>L+ <EM>float</EM></TD>
          <TD>penalize positive deviation (prediction too high) by this 
          factor</TD></TR>
        <TR>
          <TD>L- <EM>float</EM></TD>
          <TD>penalize negative deviation (prediction too low) by this 
          factor</TD></TR>
        <TR>
          <TD>epsilon <EM>float</EM></TD>
          <TD>insensitivity constant. No loss if prediction lies this close to 
            true value</TD></TR>
        <TR>
          <TD>epsilon+ <EM>float</EM></TD>
          <TD>epsilon for positive deviation only</TD></TR>
        <TR>
          <TD>epsilon- <EM>float</EM></TD>
          <TD>epsilon for negative deviation only</TD></TR>
        <TR>
          <TD>quadraticLoss+</TD>
          <TD>use quadratic loss for positive deviation</TD></TR>
        <TR>
          <TD>quadraticLoss-</TD>
          <TD>use quadratic loss for negative deviation</TD></TR>
        <TR>
          <TD>quadraticLoss</TD>
          <TD>use quadratic loss for both positive and negative 

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩欧美一二三区| jlzzjlzz亚洲女人18| 91精品蜜臀在线一区尤物| 亚洲成在人线在线播放| 欧美精品18+| 美洲天堂一区二卡三卡四卡视频| 91精品婷婷国产综合久久 | 婷婷开心激情综合| 91精品综合久久久久久| 国产乱码精品1区2区3区| 中文字幕成人在线观看| 91在线观看成人| 天堂在线亚洲视频| 久久婷婷国产综合国色天香| www.一区二区| 日韩精品成人一区二区三区| 精品国产一区二区国模嫣然| av一区二区三区| 午夜精彩视频在线观看不卡| 久久中文娱乐网| 一本高清dvd不卡在线观看| 久久综合视频网| 亚洲欧洲精品天堂一级| 欧美亚洲综合另类| 久久国产精品一区二区| 国产精品福利电影一区二区三区四区| 欧洲生活片亚洲生活在线观看| 男女视频一区二区| 中文字幕一区二区三区在线观看| 欧美精品三级日韩久久| 成人黄色av网站在线| 天天av天天翘天天综合网色鬼国产| 久久中文娱乐网| 欧美人牲a欧美精品| 国产+成+人+亚洲欧洲自线| 香蕉久久夜色精品国产使用方法 | 久久国产精品72免费观看| 国产精品久久久99| 日韩一区二区精品葵司在线 | 在线免费观看一区| 国产精品77777| 欧美色成人综合| 精品国产成人在线影院 | 欧美一级欧美一级在线播放| 国v精品久久久网| 日韩av成人高清| 亚洲精品乱码久久久久久久久 | 欧美情侣在线播放| 成人免费看黄yyy456| 欧美a级理论片| 亚洲一区二区三区爽爽爽爽爽| 欧美精品一区视频| 欧美日韩精品一区二区在线播放| 成人app网站| 国产一区二区不卡在线| 日本在线观看不卡视频| 亚洲成人免费视频| 亚洲视频 欧洲视频| 日本一区二区三区电影| 欧美大胆一级视频| 欧美肥妇bbw| 欧美日韩在线直播| 亚洲成人自拍偷拍| 国产日韩在线不卡| 精品国产一区二区精华| 欧美一区二区性放荡片| 欧美亚洲自拍偷拍| 色先锋资源久久综合| 91麻豆文化传媒在线观看| 成人短视频下载| gogo大胆日本视频一区| 成人动漫精品一区二区| 波多野结衣中文字幕一区二区三区 | 色综合夜色一区| 99精品欧美一区二区蜜桃免费 | 福利一区福利二区| 国产成人一级电影| 粉嫩av一区二区三区| 国产成人av影院| 国产精品一二一区| 高潮精品一区videoshd| 成人h版在线观看| 日韩三级精品电影久久久| 亚洲国产成人porn| 一区二区三区在线视频观看| 亚洲视频图片小说| 亚洲男人的天堂一区二区| 亚洲一区二区三区自拍| 亚洲v日本v欧美v久久精品| 亚洲午夜精品17c| 日韩精品1区2区3区| 九九九久久久精品| 福利视频网站一区二区三区| 99riav一区二区三区| 欧美视频中文字幕| 日韩欧美一区二区免费| 久久久噜噜噜久噜久久综合| 国产精品蜜臀av| 亚洲一区精品在线| 日本强好片久久久久久aaa| 国内国产精品久久| www.激情成人| 欧美一区二区免费观在线| 国产视频视频一区| 一区二区不卡在线视频 午夜欧美不卡在 | 91官网在线观看| 视频精品一区二区| 日韩vs国产vs欧美| 国产一区二区中文字幕| av不卡在线播放| 538prom精品视频线放| 久久久精品天堂| 亚洲黄色小说网站| 久久超碰97人人做人人爱| 岛国精品在线播放| 欧美另类z0zxhd电影| 国产欧美日韩另类一区| 亚洲香肠在线观看| 国产一区在线视频| 91视频一区二区| 日韩欧美一二三四区| 一区二区三区中文字幕电影| 久久激情综合网| 欧美亚洲高清一区二区三区不卡| 精品久久久久久久一区二区蜜臀| 亚洲精品欧美综合四区| 狠狠色丁香久久婷婷综合_中| 91丨porny丨在线| 国产视频在线观看一区二区三区| 亚洲va国产天堂va久久en| 成人精品免费网站| 日韩一区二区三区视频在线| 亚洲综合一区二区| 国产成人av电影在线| 欧美一区二区在线视频| 亚洲人成网站影音先锋播放| 国产在线麻豆精品观看| 欧美浪妇xxxx高跟鞋交| 亚洲视频 欧洲视频| 国产激情偷乱视频一区二区三区| 3d动漫精品啪啪1区2区免费| 亚洲精品福利视频网站| 国产夫妻精品视频| 欧美色图12p| 一区在线播放视频| 国产91精品精华液一区二区三区| 日韩一区二区视频| 天天综合色天天综合色h| 一本久久综合亚洲鲁鲁五月天 | 国产精品综合在线视频| 日韩免费观看高清完整版 | 亚洲视频一区在线观看| 国产成人免费视频网站高清观看视频 | 亚洲国产精品影院| 色狠狠色噜噜噜综合网| 一区在线播放视频| 99re8在线精品视频免费播放| 国产欧美精品一区| 国产成人亚洲精品青草天美| 久久久一区二区| 国产一区二区福利视频| 久久久噜噜噜久噜久久综合| 国产永久精品大片wwwapp| 久久色中文字幕| 国产激情一区二区三区四区| 久久精品欧美一区二区三区不卡| 精彩视频一区二区| 久久色在线视频| 国v精品久久久网| 成人欧美一区二区三区1314| 91在线视频免费91| 亚洲精品成人天堂一二三| 在线亚洲人成电影网站色www| 一区二区免费在线| 欧美日韩国产不卡| 青青草国产精品亚洲专区无| 日韩一区二区在线看| 国产一区视频在线看| 国产免费久久精品| 99精品欧美一区二区蜜桃免费 | 亚洲美女免费视频| 欧美羞羞免费网站| 免费观看一级特黄欧美大片| 精品乱码亚洲一区二区不卡| 国产精品一卡二卡| 亚洲欧美激情插| 91精品国产欧美一区二区18 | 丁香五精品蜜臀久久久久99网站 | 成人伦理片在线| 亚洲免费在线观看视频| 欧美剧情电影在线观看完整版免费励志电影| 香蕉成人啪国产精品视频综合网| 日韩免费高清电影| 波多野结衣精品在线| 亚洲福利视频导航| 久久一留热品黄| 欧美视频一区在线| 国产高清亚洲一区| 亚洲一区二区三区免费视频| 26uuu国产在线精品一区二区|