亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? mysvm.htm

?? 做回歸很好
?? HTM
?? 第 1 頁 / 共 2 頁
字號:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0048)http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/ -->
<!-- header mySVM --><HTML><HEAD><TITLE>mySVM</TITLE>
<META content="text/html; charset=gb2312" http-equiv=Content-Type>
<META content="MSHTML 5.00.2920.0" name=GENERATOR></HEAD>
<BODY bgColor=#ffffff><A name=top></A><!--- Header table --->
<TABLE bgColor=#eeeeee border=0 cellPadding=0 cellSpacing=0 width="100%">
  <COLGROUP>
  <COL width="20%">
  <COL width="70%">
  <COL width="10%"></COLGROUP>
  <TBODY>
  <TR>
    <TD rowSpan=2 width="20%"><A 
      href="http://www-ai.cs.uni-dortmund.de/logo.html"><IMG border=0 
      src="mySVM.files/eier_graybg.gif"></A></TD>
    <TD bgColor=#99cdff width="70%"><A href="http://www.uni-dortmund.de/" 
      target=_top><IMG alt="University of Dortmund" border=0 
      src="mySVM.files/balken_le.gif"></A></TD>
    <TD align=right bgColor=#eeeeee width="10%"><A 
      href="http://www.uni-dortmund.de/" target=_top><IMG alt=UniDo-Logo 
      border=0 src="mySVM.files/balken_ro.gif"></A></TD></TR>
  <TR>
    <TD><A href="http://www.cs.uni-dortmund.de/" target=_top><IMG 
      alt="Computer Science" border=0 src="mySVM.files/cs.gif"></A> <A 
      href="http://www-ai.cs.uni-dortmund.de/" target=_top><IMG 
      alt="Artificial Intelligence" border=0 src="mySVM.files/ai.gif"></A></TD>
    <TD align=right vAlign=top><A href="http://www.uni-dortmund.de/" 
      target=_top><IMG alt=UniDo-Logo border=0 
      src="mySVM.files/balken_ru.gif"></A></TD></TR>
  <TR>
    <TD bgColor=#eeeeee colSpan=3 height=5>&nbsp;<!--- spacer trick --></TD></TR><!--- XX button row -->
  <TR>
    <TD bgColor=#99cdff colSpan=2 height=25 noWrap vAlign=bottom><A 
      href="http://www-ai.cs.uni-dortmund.de/index.eng.html" 
      onmousedown="imgClick('img_ls8news'); return true" 
      onmouseout="imgNormal('img_ls8news'); return true" 
      onmouseover="imgOver('img_ls8news'); return true"><IMG alt="LS8 News" 
      border=0 height=25 name=img_ls8news src="mySVM.files/ls8news.gif" 
      width=77></A> &nbsp; <A 
      href="http://www-ai.cs.uni-dortmund.de/FORSCHUNG/index.eng.html" 
      onmousedown="imgClick('img_forschung'); return true" 
      onmouseout="imgNormal('img_forschung'); return true" 
      onmouseover="imgOver('img_forschung'); return true"><IMG alt=Research 
      border=0 height=25 name=img_forschung src="mySVM.files/forschung.eng.gif" 
      width=82></A><A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/index.eng.html" 
      onmousedown="imgClick('img_software'); return true" 
      onmouseout="imgNormal('img_software'); return true" 
      onmouseover="imgOver('img_software'); return true"><IMG alt=Software 
      border=0 height=25 name=img_software src="mySVM.files/software.gif" 
      width=83></A><A 
      href="http://www-ai.cs.uni-dortmund.de/PARTNER/index.eng.html" 
      onmousedown="imgClick('img_partner'); return true" 
      onmouseout="imgNormal('img_partner'); return true" 
      onmouseover="imgOver('img_partner'); return true"><IMG alt=Partner 
      border=0 height=25 name=img_partner src="mySVM.files/partner.gif" 
      width=73></A> &nbsp; <A 
      href="http://www-ai.cs.uni-dortmund.de/LEHRE/lehre.html" 
      onmousedown="imgClick('img_lehre'); return true" 
      onmouseout="imgNormal('img_lehre'); return true" 
      onmouseover="imgOver('img_lehre'); return true"><IMG alt=Teaching border=0 
      height=25 name=img_lehre src="mySVM.files/lehre.eng.gif" width=79></A> 
      &nbsp; <A 
      href="http://www-ai.cs.uni-dortmund.de/PERSONAL/personal.eng.html" 
      onmousedown="imgClick('img_personal'); return true" 
      onmouseout="imgNormal('img_personal'); return true" 
      onmouseover="imgOver('img_personal'); return true"><IMG alt=Staff border=0 
      height=25 name=img_personal src="mySVM.files/personal.eng.gif" 
      width=54></A><A 
      href="http://www-ai.cs.uni-dortmund.de/UNIVERSELL/index.eng.html" 
      onmousedown="imgClick('img_allgemein'); return true" 
      onmouseout="imgNormal('img_allgemein'); return true" 
      onmouseover="imgOver('img_allgemein'); return true"><IMG alt=General 
      border=0 height=25 name=img_allgemein src="mySVM.files/allgemein.eng.gif" 
      width=74></A><A href="http://www-ai.cs.uni-dortmund.de/INTERN/intern.html" 
      onmousedown="imgClick('img_intern'); return true" 
      onmouseout="imgNormal('img_intern'); return true" 
      onmouseover="imgOver('img_intern'); return true"><IMG alt=Internal 
      border=0 height=25 name=img_intern src="mySVM.files/intern.eng.gif" 
      width=85></A></TD>
    <TD align=right bgColor=#99cdff height=25 noWrap vAlign=bottom><A 
      href="http://www-ai.cs.uni-dortmund.de/Harvest/brokers/www-ai/query.eng.html" 
      onmousedown="imgClick('img_search'); return true" 
      onmouseout="imgNormal('img_search'); return true" 
      onmouseover="imgOver('img_search'); return true"><IMG alt=Search border=0 
      height=25 name=img_search src="mySVM.files/search.gif" width=30></A><A 
      href="mailto:webadmin@ls8.cs.uni-dortmund.de" 
      onmousedown="imgClick('img_mail'); return true" 
      onmouseout="imgNormal('img_mail'); return true" 
      onmouseover="imgOver('img_mail'); return true"><IMG 
      alt="Send email to webadmin@ls8.cs.uni-dortmund.de" border=0 height=25 
      name=img_mail src="mySVM.files/mail.gif" width=38></A><IMG alt="no german" 
      border=0 height=25 src="mySVM.files/no_deutsch.gif" 
width=32></TD></TR></TBODY></TABLE>
<SCRIPT language=JavaScript src="mySVM.files/buttons.eng.js" 
type=text/javascript></SCRIPT>
<!--- Body table -->
<TABLE width="100%">
  <TBODY>
  <TR>
    <TD colSpan=3><FONT size=1>&nbsp;</FONT></TD></TR>
  <TR>
    <TD>&nbsp;&nbsp;</TD>
    <TD>
      <H1>mySVM</H1><!-- /header -->
      <CENTER>
      <H1>mySVM - a support vector machine</H1>by <A 
      href="http://www-ai.cs.uni-dortmund.de/PERSONAL/rueping.html">Stefan 
      Rüping</A>, <A 
      href="mailto:rueping@ls8.cs.uni-dortmund.de">rueping@ls8.cs.uni-dortmund.de</A> 
      </CENTER>
      <H2>News </H2>
      <UL>
        <LI>Download the latest release of <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mySVM-latest.tar.gz">mySVM</A> 
        (Version 2.1.1, November 7th, 2001) 
        <LI>Download the <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mySVM-latest-bin.zip">binary 
        version for Windows</A> 
        <LI>See a <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/changes.eng.html">list 
        of changes</A> </LI></UL>
      <H2>About mySVM </H2>mySVM is an implementation of the Support Vector 
      Machine introduced by V. Vapnik (see <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#Vapnik/98a">[Vapnik/98a]</A>). 
      It is based on the optimization algorithm of <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/SVM_LIGHT/svm_light.eng.html">SVM<I><SUP>light</SUP></I></A> 
      as described in <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#Joachims/99a">[Joachims/99a]</A>. 
      mySVM can be used for pattern recognition, regression and distribution 
      estimation. 
      <H2>License </H2>This software is free only for non-commercial use. It 
      must not be modified and distributed without prior permission of the 
      author. The author is not responsible for implications from the use of 
      this software. 
      <P>If you are using mySVM for research purposes, please cite the software 
      manual available from this cite in your publications (Stefan Rüping 
      (2000): <EM>mySVM-Manual</EM>, University of Dortmund, Lehrstuhl 
      Informatik 8, http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/). 
      <H2>Installation </H2>
      <H3>Installation under Unix</H3>
      <UL>
        <LI>Download <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mySVM-latest.tar.gz">mySVM</A>. 

        <LI>Create a new directory, change into it and unpack the files into 
        this directory 
        <LI>On typical UN*X systems simply type <TT>make</TT> to compile mySVM. 
        On other systems you have to call your C++ compiler manually. </LI></UL>If 
      everything went right you should have a new subdirectory named 
      <TT>bin</TT> and to files <TT>mysvm</TT> and <TT>predict</TT> in a 
      subdirectory thereof. On some systems you might get an error message about 
      <TT>sys/times.h</TT>. If you do, open the file <TT>globals.h</TT> and 
      uncomment the line <TT>#undef use_time</TT>. 
      <H3>Installation under Windows</H3>If you get the <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mySVM-latest.tar.gz">source 
      code</A> version, you have to compile mySVM youself. First edit the file 
      <EM>globals.h</EM> and uncomment the line <TT>#define windows 1</TT>. 
      Compile the file <EM>learn.cpp</EM> to get the learning program and 
      <EM>predict.cpp</EM> for the model application program. mySVM was tested 
      under Visual C++ 6.0. You can also get the <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mySVM-latest-bin.zip">binary 
      version</A>. <A name=usage>
      <H2>Using mySVM </H2></A>For a complete reference of mySVM have a look 
      into the mySVM manual (<A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mysvm-manual.ps">Postscript</A>, 
      <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mysvm-manual.pdf">PDF</A>). 
      Here is a short users guide: 
      <UL>
        <LI><TT>mysvm</TT> is used for training a SVM on a given example set and 
        testing the results 
        <LI><TT>predict</TT> is used for predicting the functional value of new 
        examples based on an already trained SVM. </LI></UL>The input of mySVM 
      consists of 
      <UL>
        <LI>a <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#paramdef">parameter 
        definition</A> 
        <LI>a <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#kerneldef">kernel 
        definition</A> 
        <LI>one or more <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#exampledef">example 
        sets</A> </LI></UL>Input lines starting with "#" are treated as 
      commentary. The input can be given in one or more files. If no filenames 
      or the filename "-" are given, the input is read from stdin. 
      <TT>mysvm</TT> trains a SVM on the first given example set. The following 
      example sets are used for testing (if their classification is given) or 
      the functional value of the examples is being computed (if no 
      classification is given). <A name=paramdef>
      <H3>Parameter definition</H3></A>The parameter definition lets the user 
      choose the type of loss function, the optimizer parameters and the 
      training algorithm to use. The parameter definition starts with the line 
      <TT>@parameters</TT>. 
      <H4>Global parameters:</H4>
      <TABLE border=1>
        <TBODY>
        <TR>
          <TD>pattern</TD>
          <TD>use SVM for pattern recognition</TD></TR>
        <TR>
          <TD>regression</TD>
          <TD>use regression SVM <EM>(default)</EM></TD></TR>
        <TR>
          <TD>nu <EM>float</EM></TD>
          <TD>use nu-SVM with the given value of nu instead of normal SVM (see 
            <A 
            href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#Schoelkopf/etal/2000a">[Schoelkopf/etal/2000a]</A> 
            for details on nu-SVMs). 
        <TR>
          <TD>distribution</TD>
          <TD>estimate the support of the distribution of the training 
            examples (see <A 
            href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#schoelkopf/etal/99a">[Schoelkopf/etal/99a]</A>). 
            Nu must be set! 
        <TR>
          <TD>verbosity [1..5]</TD>
          <TD>ranges from 1 (no messages) over 3 (default) to 5 (flood, for 
            debugging only) </TD></TR>
        <TR>
          <TD>scale</TD>
          <TD>scale the training examples to mean 0 and variance 1 
        (default)</TD></TR>
        <TR>
          <TD>no_scale</TD>
          <TD>do not scale the training examples (may be numerically less 
            stable!)</TD></TR>
        <TR>
          <TD>format</TD>
          <TD>set the default example file format. See the description <A 
            href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#exampledef">here</A>.</TD></TR>
        <TR>
          <TD>delimiter</TD>
          <TD>set the default example file format. See the description <A 
            href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#exampledef">here</A>.</TD></TR></TBODY></TABLE>
      <H4>Loss function:</H4>
      <TABLE border=1>
        <TBODY>
        <TR>
          <TD>C <EM>float</EM></TD>
          <TD>the SVM complexity constant (Note: C will be scaled by 1 / 
            number of training examples).</TD></TR>
        <TR>
          <TD>L+ <EM>float</EM></TD>
          <TD>penalize positive deviation (prediction too high) by this 
          factor</TD></TR>
        <TR>
          <TD>L- <EM>float</EM></TD>
          <TD>penalize negative deviation (prediction too low) by this 
          factor</TD></TR>
        <TR>
          <TD>epsilon <EM>float</EM></TD>
          <TD>insensitivity constant. No loss if prediction lies this close to 
            true value</TD></TR>
        <TR>
          <TD>epsilon+ <EM>float</EM></TD>
          <TD>epsilon for positive deviation only</TD></TR>
        <TR>
          <TD>epsilon- <EM>float</EM></TD>
          <TD>epsilon for negative deviation only</TD></TR>
        <TR>
          <TD>quadraticLoss+</TD>
          <TD>use quadratic loss for positive deviation</TD></TR>
        <TR>
          <TD>quadraticLoss-</TD>
          <TD>use quadratic loss for negative deviation</TD></TR>
        <TR>
          <TD>quadraticLoss</TD>
          <TD>use quadratic loss for both positive and negative 

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
99精品视频免费在线观看| 精品中文av资源站在线观看| 国产一区二区免费看| 中文字幕乱码日本亚洲一区二区 | 国产91丝袜在线播放| 精品成人a区在线观看| 国产乱色国产精品免费视频| 天天综合色天天综合色h| 麻豆国产精品一区二区三区| 色婷婷av一区| 亚洲国产经典视频| 韩国一区二区三区| 精品国产在天天线2019| 中文字幕亚洲成人| 欧美日韩在线直播| 国产精品中文字幕一区二区三区| 亚洲精品日日夜夜| 欧美一级在线视频| av中文字幕在线不卡| 亚洲日本一区二区| 欧美大片在线观看| 欧美日韩一本到| 99精品视频中文字幕| 日本不卡视频一二三区| 国产伦精品一区二区三区免费| 99精品1区2区| 亚洲综合色自拍一区| 欧美性色综合网| 一二三区精品视频| 欧美极品美女视频| 久久久777精品电影网影网 | 粉嫩aⅴ一区二区三区四区五区| 91在线云播放| 国产精品三级av在线播放| 国产精品888| 亚洲国产视频a| 91丨porny丨在线| 亚洲色图在线视频| 国产精品一区二区你懂的| 久久精品99久久久| 日韩精品国产欧美| 美日韩一区二区三区| 亚洲国产一区二区三区| 亚洲午夜激情网站| 国产中文字幕一区| 国产麻豆日韩欧美久久| 狠狠色狠狠色综合系列| 国产久卡久卡久卡久卡视频精品| 国产寡妇亲子伦一区二区| 91网站黄www| 中文字幕一区二区三区四区不卡 | 欧美国产日本视频| 精品国产不卡一区二区三区| 日韩欧美国产午夜精品| 精品第一国产综合精品aⅴ| 精品88久久久久88久久久| 国产精品理论片在线观看| 亚洲男人的天堂av| 欧美日韩一区二区三区免费看| 日本系列欧美系列| 日韩高清一级片| 成人免费毛片a| 国产精品久久国产精麻豆99网站| 蜜桃一区二区三区在线| 久久久久久久久久美女| 高清久久久久久| 青草国产精品久久久久久| 国产一区久久久| 麻豆精品视频在线观看视频| 日韩电影一区二区三区四区| 久久精品国产99| aa级大片欧美| 国产欧美精品一区| 六月丁香婷婷色狠狠久久| 成人av网址在线| 成a人片亚洲日本久久| 欧美性色欧美a在线播放| 中文字幕在线不卡视频| 国产最新精品免费| 在线视频亚洲一区| 成人av网在线| 狠狠色丁香婷婷综合久久片| 91精品国产综合久久久久久久| 国产精品全国免费观看高清 | 国产精品福利电影一区二区三区四区| 一区视频在线播放| 成人av资源网站| 日韩理论片在线| 51精品视频一区二区三区| 国产精品18久久久久久久久久久久 | 国产suv一区二区三区88区| 国产欧美日韩在线观看| 99精品黄色片免费大全| 一本大道久久a久久精品综合| 欧美性受极品xxxx喷水| 色8久久人人97超碰香蕉987| 黄色日韩三级电影| 一区二区三区免费网站| 日本一区二区电影| 久久只精品国产| 91精品国产一区二区三区香蕉| 91麻豆免费观看| 国产成人啪午夜精品网站男同| 全国精品久久少妇| 亚洲国产精品一区二区www| 99国产欧美久久久精品| 亚洲国产视频在线| 欧美成人伊人久久综合网| 不卡的av电影| 亚洲国产综合色| 中文字幕视频一区| 精品久久久网站| 欧美影片第一页| 国产在线精品免费av| 一区二区三区四区亚洲| 91.xcao| 91色婷婷久久久久合中文| 日韩精品亚洲一区二区三区免费| 精品国产伦理网| 欧美片在线播放| 粉嫩嫩av羞羞动漫久久久| 另类欧美日韩国产在线| 中文字幕欧美一| 国产精品久久久久久久裸模| 日韩一级二级三级| 欧美成人bangbros| 日韩欧美一二区| 欧美日韩高清一区二区| 欧美三级乱人伦电影| 不卡电影免费在线播放一区| 国产不卡视频在线观看| 看电影不卡的网站| 国产一级精品在线| 国产一区二区三区在线看麻豆| 国产在线观看免费一区| 亚洲视频一二三| 亚洲女性喷水在线观看一区| 亚洲精品一二三| 一区二区三区在线观看欧美| 亚洲欧美国产77777| 欧美性欧美巨大黑白大战| 国产精品一区二区久久不卡| 欧美精品一二三| 久久国产福利国产秒拍| 国产精品毛片久久久久久久| 久久99久久久久久久久久久| 国产东北露脸精品视频| 91国产免费观看| 欧美一区二区不卡视频| 中文字幕av一区二区三区免费看 | 99久精品国产| 欧美视频在线观看一区二区| 亚洲国产一区二区视频| 亚洲v精品v日韩v欧美v专区| 午夜一区二区三区视频| 国产一区中文字幕| 色偷偷一区二区三区| 亚洲精品在线电影| 亚洲成va人在线观看| 成人爱爱电影网址| 51午夜精品国产| 最新成人av在线| 麻豆成人免费电影| 在线观看日韩电影| 国产调教视频一区| 久久精品国产99国产| 99精品视频中文字幕| 国产精品911| 91精品国产乱| 国产区在线观看成人精品| 午夜视频在线观看一区| 91福利社在线观看| 国产精品国产三级国产a| 奇米888四色在线精品| 在线精品视频一区二区三四| 中文字幕免费不卡在线| 丁香天五香天堂综合| 欧美成人免费网站| 国产毛片精品国产一区二区三区| 精品视频在线免费观看| 亚洲狠狠爱一区二区三区| 不卡视频免费播放| 国产精品久久久久久久浪潮网站| 青娱乐精品在线视频| 日本高清不卡在线观看| 香蕉av福利精品导航| 欧美在线免费观看亚洲| 顶级嫩模精品视频在线看| 欧美一区二区三区的| 欧美国产精品一区二区| 成人午夜大片免费观看| 成人毛片在线观看| 欧美色男人天堂| 国产日本欧洲亚洲| 韩国三级在线一区| 日韩一区二区三区电影在线观看 | 欧美人动与zoxxxx乱| 亚洲欧美日韩精品久久久久| 成人激情开心网| 国产精品福利一区二区|