亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? mysvm.htm

?? 做回歸很好
?? HTM
?? 第 1 頁 / 共 2 頁
字號:
        deviation</TD></TR></TBODY></TABLE>
      <H4>Optimizer parameters:</H4>
      <TABLE border=1>
        <TBODY>
        <TR>
          <TD>working_set_size <EM>int</EM></TD>
          <TD>optimize this much examples in each iteration (default: 
10)</TD></TR>
        <TR>
          <TD>max_iterations <EM>int</EM></TD>
          <TD>stop after this much iterations</TD></TR>
        <TR>
          <TD>shrink_const <EM>int</EM></TD>
          <TD>fix a variable to the bound if it is optimal for this much 
            iterations</TD></TR>
        <TR>
          <TD>is_zero <EM>float</EM></TD>
          <TD>numerical precision (default: 1e-10)</TD></TR>
        <TR>
          <TD>descend <EM>float</EM></TD>
          <TD>make this much descend on the target function in each 
          iteration</TD></TR>
        <TR>
          <TD>convergence_epsilon <EM>float</EM></TD>
          <TD>precision on the KKT conditions (default: 1e-3 for pattern 
            recognition and 1e-4 for regression)</TD></TR>
        <TR>
          <TD>kernel_cache <EM>int</EM></TD>
          <TD>size of the cache for kernel evaluations im MB (default: 
        40)</TD></TR></TBODY></TABLE>
      <H4>Training algorithms</H4>
      <TABLE border=1>
        <TBODY>
        <TR>
          <TD>cross_validation <EM>int</EM></TD>
          <TD>do cross validation on the training examples with the given 
            number of chunks</TD></TR>
        <TR>
          <TD>cv_inorder</TD>
          <TD>do cross validation in the order the examples are given in</TD></TR>
        <TR>
          <TD>cv_window <EM>int</EM></TD>
          <TD>do cross validation by moving a window of the given number of 
            chunks over the training data. (Implies cv_inorder)</TD></TR>
        <TR>
          <TD>search_C <EM>[am]</EM></TD>
          <TD>find an optimal C in the range of cmin to cmax by 
            <STRONG>A</STRONG>dding or <STRONG>M</STRONG>ultiplying the current 
            C by cdelta</TD></TR>
        <TR>
          <TD>cmin</TD>
          <TD>lower bound for search_C</TD></TR>
        <TR>
          <TD>cmax</TD>
          <TD>upper bound for search_C</TD></TR>
        <TR>
          <TD>cdelta</TD>
          <TD>step size for search_C</TD></TR></TBODY></TABLE><A name=kerneldef>
      <H3>Kernel definition </H3></A>The kernel definition lets you choose the 
      type of kernel function to use and its parameters. It starts with the line 
      <TT>@kernel</TT>
      <P>
      <TABLE border=1>
        <TBODY>
        <TR>
          <TH>name</TH>
          <TH>kernel type</TH>
          <TH>parameters</TH></TR>
        <TR>
          <TD>dot</TD>
          <TD>inner product</TD>
          <TD>none</TD></TR>
        <TR>
          <TD>polynomial</TD>
          <TD>polynomial (x*y+1)^d</TD>
          <TD>degree <EM>int</EM></TD></TR>
        <TR>
          <TD>radial</TD>
          <TD>radial basis function exp(-gamma ||x-y||^2)</TD>
          <TD>gamma <EM>float</EM></TD></TR>
        <TR>
          <TD>neural</TD>
          <TD>two layered neural net tanh(a x*y+b)</TD>
          <TD>a <EM>float</EM>, b <EM>float</EM></TD></TR>
        <TR>
          <TD>anova</TD>
          <TD>(RBF) anova kernel</TD>
          <TD>gamma <EM>float&gt;/em&gt;, degree <EM>int</EM></EM></TD></TR>
        <TR>
          <TD>user</TD>
          <TD>user definable kernel</TD>
          <TD>param_i_1 ... param_i_5 <EM>int</EM>, param_f_1 ... param_f_5 
            <EM>float</EM></TD></TR>
        <TR>
          <TD>user2</TD>
          <TD>user definable kernel 2</TD>
          <TD>param_i, param_f</TD></TR>
        <TR>
          <TD>sum_aggregation</TD>
          <TD>sum of other kernels</TD>
          <TD>number_parts <EM>int</EM>, range <EM>int</EM> <EM>int</EM>, 
            followed by <TT>number_parts</TT> kernel definitions</TD></TR>
        <TR>
          <TD>prod_aggregation</TD>
          <TD>product of other kernels</TD>
          <TD>number_parts <EM>int</EM>, range <EM>int</EM> <EM>int</EM>, 
            followed by <TT>number_parts</TT> kernel 
      definitions</TD></TR></TBODY></TABLE><A name=exampledef>
      <H3>Example sets </H3></A>An example set consists of the learning 
      attributes for each example, its classification (or functional value) and 
      its lagrangian multiplier (actually, you don't need to supply the 
      lagrangian multiplier for training and you don't even have to supply the 
      functional value for prediction. But you could). The examples can be given 
      in two different formats: dense and sparse. Note that you can change the 
      data format 
      <P>The examples set definition starts with <TT>@examples</TT>. Note that 
      each example has to be in an own line. 
      <P>WARNING: Giving real number you can also use a colon instead of a 
      decimal dot ("<TT>1234,56</TT>" instead of "<TT>1234.56</TT>", german 
      style). Therefore something like "<TT>1,234.56</TT>" does not work! 
      <H4>common parameters:</H4>
      <TABLE border=1>
        <TBODY>
        <TR>
          <TD>format <EM>F</EM></TD>
          <TD>Format of examples where <EM>F</EM> is either "sparse" or a 
            string containing "x", "y" or "a". The format strings define the 
            position of the attributes <EM>x</EM>, the funtional value 
            <EM>y</EM> and the lagrangian multiplier <EM>a</EM> in an example. 
            "x" has to be set. The default format is "yx", but you can set 
            another default in the parameters definition.</TD></TR>
        <TR>
          <TD>dimension <EM>int</EM></TD>
          <TD>number of attributes. If the dimension is not given it is set 
            from the examples (maximum dimension in sparse format, dimension 
            from the first line in dense format).</TD></TR>
        <TR>
          <TD>number <EM>int</EM></TD>
          <TD>total number of examples. A warning is issued when a wrong 
            number of examples is given</TD></TR>
        <TR>
          <TD>b <EM>float</EM></TD>
          <TD>additional constant of the hyperplane</TD></TR>
        <TR>
          <TD>delimiter <EM>char</EM></TD>
          <TD>character by which the attributes of an example are separated 
            (default: space). You can set a default in the parameters section. 
            Be careful if you set the delimiter to "," or 
      "."!</TD></TR></TBODY></TABLE>
      <H4>sparse format:</H4>In the sparse data format, only non-zero attributes 
      have to be given. For each non-zero attribute you give its attribute 
      number (starting at 1) and its value, separated by a colon. The functional 
      value is given by y:<EM>float</EM> (the "y:" is optional here!) and the 
      lagrangian multiplier by a:<EM>float</EM>. 
      <P>Example: The following lines all define the same example: 
      <UL>
        <LI><SAMP>1:-1 2:0 3:1.2 y:2 a:0</SAMP> 
        <LI><SAMP>3:1.2 y:2 1:-1</SAMP> 
        <LI><SAMP>3:1.2 2 1:-1</SAMP> </LI></UL>
      <H4>dense format</H4>The dense format consists of all attributes and (if 
      defined so) the functional values and the lagrangian multipliers listed in 
      the order given by the <TT>format</TT> parameter. 
      <P>Example: The following lines all define the same example as above: 
      <UL>
        <LI>With "<SAMP>format yx</SAMP>" (default) : "<SAMP>2 -1 0 1.2</SAMP>" 
        <LI>With "<SAMP>format xya</SAMP>" it is "<SAMP>-1 0 1.2 2 0</SAMP>" 
        <LI>And with "<SAMP>format xy</SAMP>" and "<SAMP>delimiter ','</SAMP>" 
        the example reads "<SAMP>-1,,1.2,2</SAMP>" </LI></UL>
      <H2>References </H2><!-- literatur bibkey Joachims/99a -or bibkey Vapnik/98a -or bibkey Schoelkopf/etal/2000a -or bibkey schoelkopf/etal/99a -->
      <TABLE>
        <TBODY>
        <TR>
          <TD vAlign=top><A 
            name=Schoelkopf/etal/2000a>[Schoelkopf/etal/2000a]</A></TD>
          <TD vAlign=top>Sch&ouml;lkopf, Bernhard and Smola, Alex J. and 
            Williamson, Robert C. and Bartlett, Peter L., <I>New Support Vector 
            Algorithms</I>. Neural Computation, Vol. 12, 2000.<BR></TD></TR>
        <TR>
          <TD vAlign=top><A name=Joachims/99a>[Joachims/99a]</A></TD>
          <TD vAlign=top>T. Joachims, 11 in: <I>Making large-Scale SVM 
            Learning Practical</I>. Advances in Kernel Methods - Support Vector 
            Learning, B. Sch&ouml;lkopf and C. Burges and A. Smola (ed.), MIT Press, 
            1999.<BR><A 
            href="http://www-ai.cs.uni-dortmund.de/DOKUMENTE/joachims_99a.ps.gz">Online 
            [Postscript (gz)]</A> &nbsp;<A 
            href="http://www-ai.cs.uni-dortmund.de/DOKUMENTE/joachims_99a.pdf">[PDF]</A> 
            &nbsp; </TD></TR>
        <TR>
          <TD vAlign=top><A 
          name=Schoelkopf/etal/99a>[Schoelkopf/etal/99a]</A></TD>
          <TD vAlign=top>Sch&ouml;lkopf, Bernhard and Williamson, Robert C. and 
            Smola, Alex J. and Shawe-Taylor, John, <I>SV Estimation of a 
            Distribution's Support</I>. Neural Information Processing Systems 
            12, Solla, S.A. and Leen, T.K. and Müller, K.-R. (ed.), MIT Press, 
            2000, forthcoming.<BR></TD></TR>
        <TR>
          <TD vAlign=top><A name=Vapnik/98a>[Vapnik/98a]</A></TD>
          <TD vAlign=top>V. Vapnik, <I>Statistical Learning Theory</I>. Wiley, 
            1998.<BR></TD></TR></TBODY></TABLE><!-- /literatur --><!-- footer --></TD>
    <TD>&nbsp;&nbsp;</TD></TR>
  <TR>
    <TD colSpan=3>&nbsp;</TD></TR></TBODY></TABLE>
<TABLE border=0 cellPadding=0 cellSpacing=0 width="100%">
  <TBODY>
  <TR>
    <TD bgColor=#99cdff height=25 noWrap vAlign=bottom><A 
      href="http://www-ai.cs.uni-dortmund.de/index.eng.html" 
      onmousedown="imgClick('img_bot_ls8news'); return true" 
      onmouseout="imgNormal('img_bot_ls8news'); return true" 
      onmouseover="imgOver('img_bot_ls8news'); return true"><IMG alt="LS8 News" 
      border=0 height=25 name=img_bot_ls8news src="mySVM.files/ls8news.gif" 
      width=77></A> &nbsp; <A 
      href="http://www-ai.cs.uni-dortmund.de/FORSCHUNG/index.eng.html" 
      onmousedown="imgClick('img_bot_forschung'); return true" 
      onmouseout="imgNormal('img_bot_forschung'); return true" 
      onmouseover="imgOver('img_bot_forschung'); return true"><IMG alt=Research 
      border=0 height=25 name=img_bot_forschung 
      src="mySVM.files/forschung.eng.gif" width=82></A><A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/index.eng.html" 
      onmousedown="imgClick('img_bot_software'); return true" 
      onmouseout="imgNormal('img_bot_software'); return true" 
      onmouseover="imgOver('img_bot_software'); return true"><IMG alt=Software 
      border=0 height=25 name=img_bot_software src="mySVM.files/software.gif" 
      width=83></A><A 
      href="http://www-ai.cs.uni-dortmund.de/PARTNER/index.eng.html" 
      onmousedown="imgClick('img_bot_partner'); return true" 
      onmouseout="imgNormal('img_bot_partner'); return true" 
      onmouseover="imgOver('img_bot_partner'); return true"><IMG alt=Partner 
      border=0 height=25 name=img_bot_partner src="mySVM.files/partner.gif" 
      width=73></A> &nbsp; <A 
      href="http://www-ai.cs.uni-dortmund.de/LEHRE/lehre.html" 
      onmousedown="imgClick('img_bot_lehre'); return true" 
      onmouseout="imgNormal('img_bot_lehre'); return true" 
      onmouseover="imgOver('img_bot_lehre'); return true"><IMG alt=Teaching 
      border=0 height=25 name=img_bot_lehre src="mySVM.files/lehre.eng.gif" 
      width=79></A> &nbsp; <A 
      href="http://www-ai.cs.uni-dortmund.de/PERSONAL/personal.eng.html" 
      onmousedown="imgClick('img_bot_personal'); return true" 
      onmouseout="imgNormal('img_bot_personal'); return true" 
      onmouseover="imgOver('img_bot_personal'); return true"><IMG alt=Staff 
      border=0 height=25 name=img_bot_personal 
      src="mySVM.files/personal.eng.gif" width=54></A><A 
      href="http://www-ai.cs.uni-dortmund.de/UNIVERSELL/index.eng.html" 
      onmousedown="imgClick('img_bot_allgemein'); return true" 
      onmouseout="imgNormal('img_bot_allgemein'); return true" 
      onmouseover="imgOver('img_bot_allgemein'); return true"><IMG alt=General 
      border=0 height=25 name=img_bot_allgemein 
      src="mySVM.files/allgemein.eng.gif" width=74></A><A 
      href="http://www-ai.cs.uni-dortmund.de/INTERN/intern.html" 
      onmousedown="imgClick('img_bot_intern'); return true" 
      onmouseout="imgNormal('img_bot_intern'); return true" 
      onmouseover="imgOver('img_bot_intern'); return true"><IMG alt=Internal 
      border=0 height=25 name=img_bot_intern src="mySVM.files/intern.eng.gif" 
      width=85></A></TD>
    <TD align=middle bgColor=#99cdff><SMALL>Hits:</SMALL> <IMG 
      src="mySVM.files/server-cntr.gif"></TD>
    <TD align=right bgColor=#99cdff height=25 noWrap vAlign=bottom><A 
      href="http://www-ai.cs.uni-dortmund.de/Harvest/brokers/www-ai/query.eng.html" 
      onmousedown="imgClick('img_bot_search'); return true" 
      onmouseout="imgNormal('img_bot_search'); return true" 
      onmouseover="imgOver('img_bot_search'); return true"><IMG alt=Search 
      border=0 height=25 name=img_bot_search src="mySVM.files/search.gif" 
      width=30></A><A href="mailto:webadmin@ls8.cs.uni-dortmund.de" 
      onmousedown="imgClick('img_bot_mail'); return true" 
      onmouseout="imgNormal('img_bot_mail'); return true" 
      onmouseover="imgOver('img_bot_mail'); return true"><IMG 
      alt="Send email to webadmin@ls8.cs.uni-dortmund.de" border=0 height=25 
      name=img_bot_mail src="mySVM.files/mail.gif" width=38></A><IMG 
      alt="no german" border=0 height=25 src="mySVM.files/no_deutsch.gif" 
      width=32></TD></TR></TBODY></TABLE><!-- /footer --></BODY></HTML>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
在线精品观看国产| 国产成人aaa| 欧美一区二区三区在线电影| 亚洲综合av网| 51久久夜色精品国产麻豆| 日本一区中文字幕| 久久亚洲影视婷婷| 成人黄色大片在线观看| 一区二区三区在线看| 欧美日韩国产综合一区二区| 久久国产三级精品| 久久精品日产第一区二区三区高清版| 成人黄色av网站在线| 亚洲小说欧美激情另类| 日韩视频国产视频| 国产成人精品免费看| 亚洲精品乱码久久久久久| 91精品一区二区三区久久久久久| 激情成人午夜视频| 亚洲同性同志一二三专区| 欧美日韩一本到| 国产一区二区电影| 一区二区三区蜜桃网| 日韩一本二本av| www.成人在线| 日韩不卡手机在线v区| 国产亚洲精品超碰| 日本二三区不卡| 激情亚洲综合在线| 亚洲综合激情网| 欧美精品一区视频| 欧美亚洲免费在线一区| 国产精品一区二区在线播放| 一二三四区精品视频| 精品国产乱码久久久久久图片| 波多野洁衣一区| 免费一区二区视频| 亚洲欧美日韩国产一区二区三区| 5858s免费视频成人| 99国产精品视频免费观看| 另类小说图片综合网| 一区二区三区四区在线播放 | 91在线视频观看| 日韩高清中文字幕一区| 日本中文字幕一区二区视频| 国产精品久久久久久久蜜臀| 51精品久久久久久久蜜臀| 不卡的av电影| 国产在线精品一区二区| 亚洲成a人片综合在线| 中文字幕在线一区| 欧美xxxxx牲另类人与| 欧美图区在线视频| av在线一区二区| 国产精品1区2区| 三级成人在线视频| 亚洲国产美国国产综合一区二区| 国产婷婷色一区二区三区在线| 欧美蜜桃一区二区三区| 一本色道a无线码一区v| 成人在线综合网| 国产精品自拍毛片| 国产精品一线二线三线| 麻豆成人免费电影| 日韩极品在线观看| 亚洲v精品v日韩v欧美v专区| 亚洲视频免费观看| 亚洲欧洲精品一区二区精品久久久| 欧美tickling网站挠脚心| 日韩一区二区在线看| 91精品欧美一区二区三区综合在| 欧美在线影院一区二区| 日本高清视频一区二区| 色婷婷av一区二区三区之一色屋| 99re亚洲国产精品| 色哟哟国产精品免费观看| av亚洲产国偷v产偷v自拍| 99久久99久久免费精品蜜臀| 不卡av在线免费观看| 国产91丝袜在线播放0| 国产一区二区三区在线看麻豆| 久久99久久久欧美国产| 九色综合国产一区二区三区| 麻豆91精品91久久久的内涵| 麻豆久久久久久| 狠狠色伊人亚洲综合成人| 国产剧情在线观看一区二区| 国产精品一品视频| 成人免费av资源| 色视频一区二区| 欧美日韩精品一区二区三区蜜桃| 4hu四虎永久在线影院成人| 91精品国产综合久久久久久久| 欧美一区二区黄色| 久久综合狠狠综合久久综合88| xf在线a精品一区二区视频网站| 久久久av毛片精品| 国产精品大尺度| 亚洲午夜久久久久久久久电影院| 午夜精品久久久久久久久久久| 老司机精品视频线观看86| 极品瑜伽女神91| av在线不卡免费看| 精品视频在线免费看| 日韩三级中文字幕| 国产精品久久免费看| 亚洲线精品一区二区三区| 久久成人免费日本黄色| 99久久夜色精品国产网站| 欧美日韩视频第一区| 精品福利在线导航| ㊣最新国产の精品bt伙计久久| 亚洲一区二区三区中文字幕| 久久99国产精品久久| 不卡视频一二三| 欧美一级片在线| 亚洲天堂免费在线观看视频| 青草av.久久免费一区| 国产高清成人在线| 欧美三级三级三级爽爽爽| 国产香蕉久久精品综合网| 亚洲在线视频一区| 风间由美一区二区av101| 欧美精品在线观看播放| 中文字幕成人在线观看| 日韩av网站在线观看| 91影视在线播放| 精品国产乱码久久| 亚洲午夜羞羞片| eeuss鲁片一区二区三区| 日韩欧美国产电影| 亚洲午夜电影网| 成人精品免费视频| 精品嫩草影院久久| 亚洲激情欧美激情| 国产精品综合久久| 7777精品伊人久久久大香线蕉的 | 国产91丝袜在线播放0| 欧美老女人在线| 亚洲丝袜美腿综合| 国产一区二区h| 日韩一区二区免费视频| 亚洲综合在线第一页| av在线不卡免费看| 国产偷国产偷精品高清尤物| 日韩国产欧美在线观看| 色av综合在线| 亚洲少妇最新在线视频| 国产成人精品网址| 久久久国产午夜精品| 另类人妖一区二区av| 69堂成人精品免费视频| 亚洲一区二区三区视频在线播放 | 一本色道久久综合精品竹菊| 欧美极品xxx| 激情综合色播五月| 日韩欧美色电影| 日欧美一区二区| 91.com在线观看| 偷窥国产亚洲免费视频| 欧美日韩国产免费一区二区| 亚洲嫩草精品久久| 97国产一区二区| 亚洲免费观看高清完整版在线观看 | 激情伊人五月天久久综合| 欧美一区二区在线免费播放 | 亚洲欧美在线观看| 成人aa视频在线观看| 亚洲国产岛国毛片在线| 国产传媒日韩欧美成人| 亚洲国产精品成人久久综合一区| 国产成人免费xxxxxxxx| 国产精品嫩草久久久久| 成人国产精品视频| 伊人夜夜躁av伊人久久| 欧美日韩精品一区视频| 免费精品视频在线| www国产精品av| 国产盗摄女厕一区二区三区| 国产精品乱人伦一区二区| 99久久久国产精品| 亚洲精品乱码久久久久久日本蜜臀| 欧日韩精品视频| 日韩精品福利网| 久久久不卡影院| av日韩在线网站| 亚洲一区在线电影| 日韩欧美成人激情| 成人综合在线观看| 亚洲乱码国产乱码精品精的特点| 欧洲精品一区二区| 久色婷婷小香蕉久久| 欧美激情一区二区三区在线| aaa亚洲精品一二三区| 亚洲一区电影777| 欧美大片一区二区三区| 国产99久久久国产精品免费看| 亚洲男帅同性gay1069| 在线播放91灌醉迷j高跟美女| 久久99精品久久久久久|