亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專(zhuān)輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? mysvm.htm

?? 介紹支持向量機(jī)SVM介紹的參考文獻(xiàn)以及程序源代碼
?? HTM
?? 第 1 頁(yè) / 共 2 頁(yè)
字號(hào):
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0048)http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/ -->
<!-- header mySVM --><HTML><HEAD><TITLE>mySVM</TITLE>
<META content="text/html; charset=gb2312" http-equiv=Content-Type>
<META content="MSHTML 5.00.2920.0" name=GENERATOR></HEAD>
<BODY bgColor=#ffffff><A name=top></A><!--- Header table --->
<TABLE bgColor=#eeeeee border=0 cellPadding=0 cellSpacing=0 width="100%">
  <COLGROUP>
  <COL width="20%">
  <COL width="70%">
  <COL width="10%"></COLGROUP>
  <TBODY>
  <TR>
    <TD rowSpan=2 width="20%"><A 
      href="http://www-ai.cs.uni-dortmund.de/logo.html"><IMG border=0 
      src="mySVM.files/eier_graybg.gif"></A></TD>
    <TD bgColor=#99cdff width="70%"><A href="http://www.uni-dortmund.de/" 
      target=_top><IMG alt="University of Dortmund" border=0 
      src="mySVM.files/balken_le.gif"></A></TD>
    <TD align=right bgColor=#eeeeee width="10%"><A 
      href="http://www.uni-dortmund.de/" target=_top><IMG alt=UniDo-Logo 
      border=0 src="mySVM.files/balken_ro.gif"></A></TD></TR>
  <TR>
    <TD><A href="http://www.cs.uni-dortmund.de/" target=_top><IMG 
      alt="Computer Science" border=0 src="mySVM.files/cs.gif"></A> <A 
      href="http://www-ai.cs.uni-dortmund.de/" target=_top><IMG 
      alt="Artificial Intelligence" border=0 src="mySVM.files/ai.gif"></A></TD>
    <TD align=right vAlign=top><A href="http://www.uni-dortmund.de/" 
      target=_top><IMG alt=UniDo-Logo border=0 
      src="mySVM.files/balken_ru.gif"></A></TD></TR>
  <TR>
    <TD bgColor=#eeeeee colSpan=3 height=5>&nbsp;<!--- spacer trick --></TD></TR><!--- XX button row -->
  <TR>
    <TD bgColor=#99cdff colSpan=2 height=25 noWrap vAlign=bottom><A 
      href="http://www-ai.cs.uni-dortmund.de/index.eng.html" 
      onmousedown="imgClick('img_ls8news'); return true" 
      onmouseout="imgNormal('img_ls8news'); return true" 
      onmouseover="imgOver('img_ls8news'); return true"><IMG alt="LS8 News" 
      border=0 height=25 name=img_ls8news src="mySVM.files/ls8news.gif" 
      width=77></A> &nbsp; <A 
      href="http://www-ai.cs.uni-dortmund.de/FORSCHUNG/index.eng.html" 
      onmousedown="imgClick('img_forschung'); return true" 
      onmouseout="imgNormal('img_forschung'); return true" 
      onmouseover="imgOver('img_forschung'); return true"><IMG alt=Research 
      border=0 height=25 name=img_forschung src="mySVM.files/forschung.eng.gif" 
      width=82></A><A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/index.eng.html" 
      onmousedown="imgClick('img_software'); return true" 
      onmouseout="imgNormal('img_software'); return true" 
      onmouseover="imgOver('img_software'); return true"><IMG alt=Software 
      border=0 height=25 name=img_software src="mySVM.files/software.gif" 
      width=83></A><A 
      href="http://www-ai.cs.uni-dortmund.de/PARTNER/index.eng.html" 
      onmousedown="imgClick('img_partner'); return true" 
      onmouseout="imgNormal('img_partner'); return true" 
      onmouseover="imgOver('img_partner'); return true"><IMG alt=Partner 
      border=0 height=25 name=img_partner src="mySVM.files/partner.gif" 
      width=73></A> &nbsp; <A 
      href="http://www-ai.cs.uni-dortmund.de/LEHRE/lehre.html" 
      onmousedown="imgClick('img_lehre'); return true" 
      onmouseout="imgNormal('img_lehre'); return true" 
      onmouseover="imgOver('img_lehre'); return true"><IMG alt=Teaching border=0 
      height=25 name=img_lehre src="mySVM.files/lehre.eng.gif" width=79></A> 
      &nbsp; <A 
      href="http://www-ai.cs.uni-dortmund.de/PERSONAL/personal.eng.html" 
      onmousedown="imgClick('img_personal'); return true" 
      onmouseout="imgNormal('img_personal'); return true" 
      onmouseover="imgOver('img_personal'); return true"><IMG alt=Staff border=0 
      height=25 name=img_personal src="mySVM.files/personal.eng.gif" 
      width=54></A><A 
      href="http://www-ai.cs.uni-dortmund.de/UNIVERSELL/index.eng.html" 
      onmousedown="imgClick('img_allgemein'); return true" 
      onmouseout="imgNormal('img_allgemein'); return true" 
      onmouseover="imgOver('img_allgemein'); return true"><IMG alt=General 
      border=0 height=25 name=img_allgemein src="mySVM.files/allgemein.eng.gif" 
      width=74></A><A href="http://www-ai.cs.uni-dortmund.de/INTERN/intern.html" 
      onmousedown="imgClick('img_intern'); return true" 
      onmouseout="imgNormal('img_intern'); return true" 
      onmouseover="imgOver('img_intern'); return true"><IMG alt=Internal 
      border=0 height=25 name=img_intern src="mySVM.files/intern.eng.gif" 
      width=85></A></TD>
    <TD align=right bgColor=#99cdff height=25 noWrap vAlign=bottom><A 
      href="http://www-ai.cs.uni-dortmund.de/Harvest/brokers/www-ai/query.eng.html" 
      onmousedown="imgClick('img_search'); return true" 
      onmouseout="imgNormal('img_search'); return true" 
      onmouseover="imgOver('img_search'); return true"><IMG alt=Search border=0 
      height=25 name=img_search src="mySVM.files/search.gif" width=30></A><A 
      href="mailto:webadmin@ls8.cs.uni-dortmund.de" 
      onmousedown="imgClick('img_mail'); return true" 
      onmouseout="imgNormal('img_mail'); return true" 
      onmouseover="imgOver('img_mail'); return true"><IMG 
      alt="Send email to webadmin@ls8.cs.uni-dortmund.de" border=0 height=25 
      name=img_mail src="mySVM.files/mail.gif" width=38></A><IMG alt="no german" 
      border=0 height=25 src="mySVM.files/no_deutsch.gif" 
width=32></TD></TR></TBODY></TABLE>
<SCRIPT language=JavaScript src="mySVM.files/buttons.eng.js" 
type=text/javascript></SCRIPT>
<!--- Body table -->
<TABLE width="100%">
  <TBODY>
  <TR>
    <TD colSpan=3><FONT size=1>&nbsp;</FONT></TD></TR>
  <TR>
    <TD>&nbsp;&nbsp;</TD>
    <TD>
      <H1>mySVM</H1><!-- /header -->
      <CENTER>
      <H1>mySVM - a support vector machine</H1>by <A 
      href="http://www-ai.cs.uni-dortmund.de/PERSONAL/rueping.html">Stefan 
      Rüping</A>, <A 
      href="mailto:rueping@ls8.cs.uni-dortmund.de">rueping@ls8.cs.uni-dortmund.de</A> 
      </CENTER>
      <H2>News </H2>
      <UL>
        <LI>Download the latest release of <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mySVM-latest.tar.gz">mySVM</A> 
        (Version 2.1.1, November 7th, 2001) 
        <LI>Download the <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mySVM-latest-bin.zip">binary 
        version for Windows</A> 
        <LI>See a <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/changes.eng.html">list 
        of changes</A> </LI></UL>
      <H2>About mySVM </H2>mySVM is an implementation of the Support Vector 
      Machine introduced by V. Vapnik (see <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#Vapnik/98a">[Vapnik/98a]</A>). 
      It is based on the optimization algorithm of <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/SVM_LIGHT/svm_light.eng.html">SVM<I><SUP>light</SUP></I></A> 
      as described in <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#Joachims/99a">[Joachims/99a]</A>. 
      mySVM can be used for pattern recognition, regression and distribution 
      estimation. 
      <H2>License </H2>This software is free only for non-commercial use. It 
      must not be modified and distributed without prior permission of the 
      author. The author is not responsible for implications from the use of 
      this software. 
      <P>If you are using mySVM for research purposes, please cite the software 
      manual available from this cite in your publications (Stefan Rüping 
      (2000): <EM>mySVM-Manual</EM>, University of Dortmund, Lehrstuhl 
      Informatik 8, http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/). 
      <H2>Installation </H2>
      <H3>Installation under Unix</H3>
      <UL>
        <LI>Download <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mySVM-latest.tar.gz">mySVM</A>. 

        <LI>Create a new directory, change into it and unpack the files into 
        this directory 
        <LI>On typical UN*X systems simply type <TT>make</TT> to compile mySVM. 
        On other systems you have to call your C++ compiler manually. </LI></UL>If 
      everything went right you should have a new subdirectory named 
      <TT>bin</TT> and to files <TT>mysvm</TT> and <TT>predict</TT> in a 
      subdirectory thereof. On some systems you might get an error message about 
      <TT>sys/times.h</TT>. If you do, open the file <TT>globals.h</TT> and 
      uncomment the line <TT>#undef use_time</TT>. 
      <H3>Installation under Windows</H3>If you get the <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mySVM-latest.tar.gz">source 
      code</A> version, you have to compile mySVM youself. First edit the file 
      <EM>globals.h</EM> and uncomment the line <TT>#define windows 1</TT>. 
      Compile the file <EM>learn.cpp</EM> to get the learning program and 
      <EM>predict.cpp</EM> for the model application program. mySVM was tested 
      under Visual C++ 6.0. You can also get the <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mySVM-latest-bin.zip">binary 
      version</A>. <A name=usage>
      <H2>Using mySVM </H2></A>For a complete reference of mySVM have a look 
      into the mySVM manual (<A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mysvm-manual.ps">Postscript</A>, 
      <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mysvm-manual.pdf">PDF</A>). 
      Here is a short users guide: 
      <UL>
        <LI><TT>mysvm</TT> is used for training a SVM on a given example set and 
        testing the results 
        <LI><TT>predict</TT> is used for predicting the functional value of new 
        examples based on an already trained SVM. </LI></UL>The input of mySVM 
      consists of 
      <UL>
        <LI>a <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#paramdef">parameter 
        definition</A> 
        <LI>a <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#kerneldef">kernel 
        definition</A> 
        <LI>one or more <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#exampledef">example 
        sets</A> </LI></UL>Input lines starting with "#" are treated as 
      commentary. The input can be given in one or more files. If no filenames 
      or the filename "-" are given, the input is read from stdin. 
      <TT>mysvm</TT> trains a SVM on the first given example set. The following 
      example sets are used for testing (if their classification is given) or 
      the functional value of the examples is being computed (if no 
      classification is given). <A name=paramdef>
      <H3>Parameter definition</H3></A>The parameter definition lets the user 
      choose the type of loss function, the optimizer parameters and the 
      training algorithm to use. The parameter definition starts with the line 
      <TT>@parameters</TT>. 
      <H4>Global parameters:</H4>
      <TABLE border=1>
        <TBODY>
        <TR>
          <TD>pattern</TD>
          <TD>use SVM for pattern recognition</TD></TR>
        <TR>
          <TD>regression</TD>
          <TD>use regression SVM <EM>(default)</EM></TD></TR>
        <TR>
          <TD>nu <EM>float</EM></TD>
          <TD>use nu-SVM with the given value of nu instead of normal SVM (see 
            <A 
            href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#Schoelkopf/etal/2000a">[Schoelkopf/etal/2000a]</A> 
            for details on nu-SVMs). 
        <TR>
          <TD>distribution</TD>
          <TD>estimate the support of the distribution of the training 
            examples (see <A 
            href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#schoelkopf/etal/99a">[Schoelkopf/etal/99a]</A>). 
            Nu must be set! 
        <TR>
          <TD>verbosity [1..5]</TD>
          <TD>ranges from 1 (no messages) over 3 (default) to 5 (flood, for 
            debugging only) </TD></TR>
        <TR>
          <TD>scale</TD>
          <TD>scale the training examples to mean 0 and variance 1 
        (default)</TD></TR>
        <TR>
          <TD>no_scale</TD>
          <TD>do not scale the training examples (may be numerically less 
            stable!)</TD></TR>
        <TR>
          <TD>format</TD>
          <TD>set the default example file format. See the description <A 
            href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#exampledef">here</A>.</TD></TR>
        <TR>
          <TD>delimiter</TD>
          <TD>set the default example file format. See the description <A 
            href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#exampledef">here</A>.</TD></TR></TBODY></TABLE>
      <H4>Loss function:</H4>
      <TABLE border=1>
        <TBODY>
        <TR>
          <TD>C <EM>float</EM></TD>
          <TD>the SVM complexity constant (Note: C will be scaled by 1 / 
            number of training examples).</TD></TR>
        <TR>
          <TD>L+ <EM>float</EM></TD>
          <TD>penalize positive deviation (prediction too high) by this 
          factor</TD></TR>
        <TR>
          <TD>L- <EM>float</EM></TD>
          <TD>penalize negative deviation (prediction too low) by this 
          factor</TD></TR>
        <TR>
          <TD>epsilon <EM>float</EM></TD>
          <TD>insensitivity constant. No loss if prediction lies this close to 
            true value</TD></TR>
        <TR>
          <TD>epsilon+ <EM>float</EM></TD>
          <TD>epsilon for positive deviation only</TD></TR>
        <TR>
          <TD>epsilon- <EM>float</EM></TD>
          <TD>epsilon for negative deviation only</TD></TR>
        <TR>
          <TD>quadraticLoss+</TD>
          <TD>use quadratic loss for positive deviation</TD></TR>
        <TR>
          <TD>quadraticLoss-</TD>
          <TD>use quadratic loss for negative deviation</TD></TR>
        <TR>
          <TD>quadraticLoss</TD>
          <TD>use quadratic loss for both positive and negative 

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
天天色综合成人网| 2023国产一二三区日本精品2022| 亚洲精品视频在线观看免费| 亚洲免费观看高清完整版在线观看 | 国产精品视频九色porn| 亚洲激情av在线| 看电视剧不卡顿的网站| 成人深夜在线观看| 欧美日韩成人高清| 国产欧美一区二区在线观看| 亚洲国产成人av网| 国产精品影视网| 欧美在线观看18| 久久精品视频网| 亚洲国产精品一区二区尤物区| 韩国在线一区二区| 欧美一a一片一级一片| 久久免费电影网| 亚洲bdsm女犯bdsm网站| 国产成人自拍网| 欧美美女黄视频| 中文字幕亚洲电影| 免费成人美女在线观看| 色网站国产精品| 国产欧美日韩一区二区三区在线观看| 亚洲国产欧美另类丝袜| 成人av资源在线观看| 日韩午夜激情电影| 亚洲午夜精品网| 成av人片一区二区| 欧美电影免费观看高清完整版在线| 亚洲欧美一区二区三区国产精品| 激情综合网最新| 91.com视频| 亚洲一区精品在线| 成人v精品蜜桃久久一区| 日韩精品一区二区三区在线播放 | 色婷婷国产精品综合在线观看| 久久久99久久精品欧美| 图片区小说区区亚洲影院| 99热精品国产| 国产午夜亚洲精品理论片色戒| 日韩精品一区第一页| 在线免费观看日本欧美| 国产精品久久久久久户外露出| 精品在线一区二区| 日韩三级免费观看| 肉色丝袜一区二区| 欧美午夜宅男影院| 亚洲欧美日韩国产综合在线| 成人综合在线观看| 国产女人aaa级久久久级| 精品一区二区免费| 日韩三级在线免费观看| 欧美aaaaaa午夜精品| 欧美日韩久久久一区| 亚洲成人激情av| 欧洲中文字幕精品| 亚洲欧美另类小说视频| 成人免费观看av| 国产精品久线在线观看| 国产aⅴ综合色| 久久久91精品国产一区二区三区| 久久99精品久久久久| 日韩欧美国产wwwww| 久久国产精品露脸对白| 日韩欧美123| 另类综合日韩欧美亚洲| 精品久久久久久最新网址| 免费亚洲电影在线| 欧美xfplay| 激情图片小说一区| 精品国产乱码久久久久久免费| 精品亚洲成av人在线观看| 精品毛片乱码1区2区3区| 国精产品一区一区三区mba视频| 精品捆绑美女sm三区| 老司机精品视频导航| 日韩精品一区二区三区在线观看| 国精产品一区一区三区mba视频 | 福利视频网站一区二区三区| 日本一区二区视频在线| 成人精品免费看| 亚洲色图丝袜美腿| 欧美中文字幕一二三区视频| 首页国产欧美久久| 日韩一级免费一区| 国产成人99久久亚洲综合精品| 久久久精品tv| 91在线视频网址| 亚洲国产精品综合小说图片区| 欧美一区二区三区婷婷月色| 久草热8精品视频在线观看| 国产欧美精品在线观看| 91欧美一区二区| 五月天亚洲精品| 精品福利二区三区| 成人夜色视频网站在线观看| 亚洲色图欧洲色图婷婷| 91精品久久久久久蜜臀| 国产一二三精品| 成人欧美一区二区三区白人| 欧美精品18+| 国产精品伊人色| 亚洲自拍偷拍图区| 欧美大尺度电影在线| 播五月开心婷婷综合| 亚洲一区二区三区四区在线免费观看 | 国产精品毛片久久久久久| 91在线视频18| 美女视频黄免费的久久| 亚洲国产岛国毛片在线| 欧美亚洲一区二区在线| 美女网站在线免费欧美精品| 国产精品卡一卡二卡三| 7777精品伊人久久久大香线蕉最新版| 国产一区二区三区久久悠悠色av | 欧美日韩在线直播| 久久av资源网| 中文字幕佐山爱一区二区免费| 91精品国产品国语在线不卡| 丰满放荡岳乱妇91ww| 亚洲电影视频在线| 国产日韩欧美精品综合| 欧美三级中文字幕在线观看| 国产一区二区三区在线观看精品| 亚洲一区二三区| 国产精品午夜在线| 欧美一区二区在线播放| 不卡的电影网站| 另类中文字幕网| 亚洲午夜久久久久久久久电影网| 国产亚洲欧美日韩日本| 欧美日韩1234| 99久久久久久| 精品一二三四区| 婷婷亚洲久悠悠色悠在线播放| 国产精品私人影院| 欧美mv日韩mv亚洲| 欧美日韩一本到| yourporn久久国产精品| 久久精品99久久久| 亚洲一区二区精品3399| 亚洲国产精品成人久久综合一区| 日韩女优av电影| 欧美另类变人与禽xxxxx| 成人av在线电影| 国产一区二区电影| 青娱乐精品视频| 亚洲午夜成aⅴ人片| 亚洲女同女同女同女同女同69| 国产亚洲欧洲一区高清在线观看| 日韩一区二区三区在线观看| 色噜噜狠狠成人中文综合| 成人在线综合网| 国产精品中文字幕欧美| 理论片日本一区| 日本不卡在线视频| 亚洲成av人综合在线观看| 亚洲日本在线视频观看| 国产精品亲子伦对白| www国产精品av| 欧美变态tickle挠乳网站| 91精品国产色综合久久ai换脸 | 蜜臀a∨国产成人精品| 亚洲777理论| 亚洲日本在线观看| 综合激情成人伊人| 中文字幕乱码久久午夜不卡| 国产视频亚洲色图| 久久久美女艺术照精彩视频福利播放| 日韩丝袜情趣美女图片| 7777精品伊人久久久大香线蕉的 | 日韩精品91亚洲二区在线观看 | 欧美精品一区二区三| 精品少妇一区二区三区日产乱码| 欧美美女bb生活片| 欧美精品久久99久久在免费线| 欧美性生交片4| 欧美午夜精品免费| 欧美中文字幕久久| 欧美日韩一卡二卡| 911精品产国品一二三产区 | 国产电影一区在线| 国产精品一区二区三区乱码| 国产一区二区视频在线播放| 国产精品白丝av| 国产不卡免费视频| 国产久卡久卡久卡久卡视频精品| 开心九九激情九九欧美日韩精美视频电影 | 成人av电影免费在线播放| 99久久久久免费精品国产| 色哟哟一区二区| 欧美色窝79yyyycom| 777a∨成人精品桃花网| 精品久久久久久无| 国产精品美女久久久久aⅴ| 亚洲精品精品亚洲| 亚洲bt欧美bt精品| 国产在线精品一区二区夜色|