亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? mysvm.htm

?? 介紹支持向量機SVM介紹的參考文獻以及程序源代碼
?? HTM
?? 第 1 頁 / 共 2 頁
字號:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0048)http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/ -->
<!-- header mySVM --><HTML><HEAD><TITLE>mySVM</TITLE>
<META content="text/html; charset=gb2312" http-equiv=Content-Type>
<META content="MSHTML 5.00.2920.0" name=GENERATOR></HEAD>
<BODY bgColor=#ffffff><A name=top></A><!--- Header table --->
<TABLE bgColor=#eeeeee border=0 cellPadding=0 cellSpacing=0 width="100%">
  <COLGROUP>
  <COL width="20%">
  <COL width="70%">
  <COL width="10%"></COLGROUP>
  <TBODY>
  <TR>
    <TD rowSpan=2 width="20%"><A 
      href="http://www-ai.cs.uni-dortmund.de/logo.html"><IMG border=0 
      src="mySVM.files/eier_graybg.gif"></A></TD>
    <TD bgColor=#99cdff width="70%"><A href="http://www.uni-dortmund.de/" 
      target=_top><IMG alt="University of Dortmund" border=0 
      src="mySVM.files/balken_le.gif"></A></TD>
    <TD align=right bgColor=#eeeeee width="10%"><A 
      href="http://www.uni-dortmund.de/" target=_top><IMG alt=UniDo-Logo 
      border=0 src="mySVM.files/balken_ro.gif"></A></TD></TR>
  <TR>
    <TD><A href="http://www.cs.uni-dortmund.de/" target=_top><IMG 
      alt="Computer Science" border=0 src="mySVM.files/cs.gif"></A> <A 
      href="http://www-ai.cs.uni-dortmund.de/" target=_top><IMG 
      alt="Artificial Intelligence" border=0 src="mySVM.files/ai.gif"></A></TD>
    <TD align=right vAlign=top><A href="http://www.uni-dortmund.de/" 
      target=_top><IMG alt=UniDo-Logo border=0 
      src="mySVM.files/balken_ru.gif"></A></TD></TR>
  <TR>
    <TD bgColor=#eeeeee colSpan=3 height=5>&nbsp;<!--- spacer trick --></TD></TR><!--- XX button row -->
  <TR>
    <TD bgColor=#99cdff colSpan=2 height=25 noWrap vAlign=bottom><A 
      href="http://www-ai.cs.uni-dortmund.de/index.eng.html" 
      onmousedown="imgClick('img_ls8news'); return true" 
      onmouseout="imgNormal('img_ls8news'); return true" 
      onmouseover="imgOver('img_ls8news'); return true"><IMG alt="LS8 News" 
      border=0 height=25 name=img_ls8news src="mySVM.files/ls8news.gif" 
      width=77></A> &nbsp; <A 
      href="http://www-ai.cs.uni-dortmund.de/FORSCHUNG/index.eng.html" 
      onmousedown="imgClick('img_forschung'); return true" 
      onmouseout="imgNormal('img_forschung'); return true" 
      onmouseover="imgOver('img_forschung'); return true"><IMG alt=Research 
      border=0 height=25 name=img_forschung src="mySVM.files/forschung.eng.gif" 
      width=82></A><A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/index.eng.html" 
      onmousedown="imgClick('img_software'); return true" 
      onmouseout="imgNormal('img_software'); return true" 
      onmouseover="imgOver('img_software'); return true"><IMG alt=Software 
      border=0 height=25 name=img_software src="mySVM.files/software.gif" 
      width=83></A><A 
      href="http://www-ai.cs.uni-dortmund.de/PARTNER/index.eng.html" 
      onmousedown="imgClick('img_partner'); return true" 
      onmouseout="imgNormal('img_partner'); return true" 
      onmouseover="imgOver('img_partner'); return true"><IMG alt=Partner 
      border=0 height=25 name=img_partner src="mySVM.files/partner.gif" 
      width=73></A> &nbsp; <A 
      href="http://www-ai.cs.uni-dortmund.de/LEHRE/lehre.html" 
      onmousedown="imgClick('img_lehre'); return true" 
      onmouseout="imgNormal('img_lehre'); return true" 
      onmouseover="imgOver('img_lehre'); return true"><IMG alt=Teaching border=0 
      height=25 name=img_lehre src="mySVM.files/lehre.eng.gif" width=79></A> 
      &nbsp; <A 
      href="http://www-ai.cs.uni-dortmund.de/PERSONAL/personal.eng.html" 
      onmousedown="imgClick('img_personal'); return true" 
      onmouseout="imgNormal('img_personal'); return true" 
      onmouseover="imgOver('img_personal'); return true"><IMG alt=Staff border=0 
      height=25 name=img_personal src="mySVM.files/personal.eng.gif" 
      width=54></A><A 
      href="http://www-ai.cs.uni-dortmund.de/UNIVERSELL/index.eng.html" 
      onmousedown="imgClick('img_allgemein'); return true" 
      onmouseout="imgNormal('img_allgemein'); return true" 
      onmouseover="imgOver('img_allgemein'); return true"><IMG alt=General 
      border=0 height=25 name=img_allgemein src="mySVM.files/allgemein.eng.gif" 
      width=74></A><A href="http://www-ai.cs.uni-dortmund.de/INTERN/intern.html" 
      onmousedown="imgClick('img_intern'); return true" 
      onmouseout="imgNormal('img_intern'); return true" 
      onmouseover="imgOver('img_intern'); return true"><IMG alt=Internal 
      border=0 height=25 name=img_intern src="mySVM.files/intern.eng.gif" 
      width=85></A></TD>
    <TD align=right bgColor=#99cdff height=25 noWrap vAlign=bottom><A 
      href="http://www-ai.cs.uni-dortmund.de/Harvest/brokers/www-ai/query.eng.html" 
      onmousedown="imgClick('img_search'); return true" 
      onmouseout="imgNormal('img_search'); return true" 
      onmouseover="imgOver('img_search'); return true"><IMG alt=Search border=0 
      height=25 name=img_search src="mySVM.files/search.gif" width=30></A><A 
      href="mailto:webadmin@ls8.cs.uni-dortmund.de" 
      onmousedown="imgClick('img_mail'); return true" 
      onmouseout="imgNormal('img_mail'); return true" 
      onmouseover="imgOver('img_mail'); return true"><IMG 
      alt="Send email to webadmin@ls8.cs.uni-dortmund.de" border=0 height=25 
      name=img_mail src="mySVM.files/mail.gif" width=38></A><IMG alt="no german" 
      border=0 height=25 src="mySVM.files/no_deutsch.gif" 
width=32></TD></TR></TBODY></TABLE>
<SCRIPT language=JavaScript src="mySVM.files/buttons.eng.js" 
type=text/javascript></SCRIPT>
<!--- Body table -->
<TABLE width="100%">
  <TBODY>
  <TR>
    <TD colSpan=3><FONT size=1>&nbsp;</FONT></TD></TR>
  <TR>
    <TD>&nbsp;&nbsp;</TD>
    <TD>
      <H1>mySVM</H1><!-- /header -->
      <CENTER>
      <H1>mySVM - a support vector machine</H1>by <A 
      href="http://www-ai.cs.uni-dortmund.de/PERSONAL/rueping.html">Stefan 
      Rüping</A>, <A 
      href="mailto:rueping@ls8.cs.uni-dortmund.de">rueping@ls8.cs.uni-dortmund.de</A> 
      </CENTER>
      <H2>News </H2>
      <UL>
        <LI>Download the latest release of <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mySVM-latest.tar.gz">mySVM</A> 
        (Version 2.1.1, November 7th, 2001) 
        <LI>Download the <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mySVM-latest-bin.zip">binary 
        version for Windows</A> 
        <LI>See a <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/changes.eng.html">list 
        of changes</A> </LI></UL>
      <H2>About mySVM </H2>mySVM is an implementation of the Support Vector 
      Machine introduced by V. Vapnik (see <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#Vapnik/98a">[Vapnik/98a]</A>). 
      It is based on the optimization algorithm of <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/SVM_LIGHT/svm_light.eng.html">SVM<I><SUP>light</SUP></I></A> 
      as described in <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#Joachims/99a">[Joachims/99a]</A>. 
      mySVM can be used for pattern recognition, regression and distribution 
      estimation. 
      <H2>License </H2>This software is free only for non-commercial use. It 
      must not be modified and distributed without prior permission of the 
      author. The author is not responsible for implications from the use of 
      this software. 
      <P>If you are using mySVM for research purposes, please cite the software 
      manual available from this cite in your publications (Stefan Rüping 
      (2000): <EM>mySVM-Manual</EM>, University of Dortmund, Lehrstuhl 
      Informatik 8, http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/). 
      <H2>Installation </H2>
      <H3>Installation under Unix</H3>
      <UL>
        <LI>Download <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mySVM-latest.tar.gz">mySVM</A>. 

        <LI>Create a new directory, change into it and unpack the files into 
        this directory 
        <LI>On typical UN*X systems simply type <TT>make</TT> to compile mySVM. 
        On other systems you have to call your C++ compiler manually. </LI></UL>If 
      everything went right you should have a new subdirectory named 
      <TT>bin</TT> and to files <TT>mysvm</TT> and <TT>predict</TT> in a 
      subdirectory thereof. On some systems you might get an error message about 
      <TT>sys/times.h</TT>. If you do, open the file <TT>globals.h</TT> and 
      uncomment the line <TT>#undef use_time</TT>. 
      <H3>Installation under Windows</H3>If you get the <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mySVM-latest.tar.gz">source 
      code</A> version, you have to compile mySVM youself. First edit the file 
      <EM>globals.h</EM> and uncomment the line <TT>#define windows 1</TT>. 
      Compile the file <EM>learn.cpp</EM> to get the learning program and 
      <EM>predict.cpp</EM> for the model application program. mySVM was tested 
      under Visual C++ 6.0. You can also get the <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mySVM-latest-bin.zip">binary 
      version</A>. <A name=usage>
      <H2>Using mySVM </H2></A>For a complete reference of mySVM have a look 
      into the mySVM manual (<A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mysvm-manual.ps">Postscript</A>, 
      <A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/mysvm-manual.pdf">PDF</A>). 
      Here is a short users guide: 
      <UL>
        <LI><TT>mysvm</TT> is used for training a SVM on a given example set and 
        testing the results 
        <LI><TT>predict</TT> is used for predicting the functional value of new 
        examples based on an already trained SVM. </LI></UL>The input of mySVM 
      consists of 
      <UL>
        <LI>a <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#paramdef">parameter 
        definition</A> 
        <LI>a <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#kerneldef">kernel 
        definition</A> 
        <LI>one or more <A 
        href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#exampledef">example 
        sets</A> </LI></UL>Input lines starting with "#" are treated as 
      commentary. The input can be given in one or more files. If no filenames 
      or the filename "-" are given, the input is read from stdin. 
      <TT>mysvm</TT> trains a SVM on the first given example set. The following 
      example sets are used for testing (if their classification is given) or 
      the functional value of the examples is being computed (if no 
      classification is given). <A name=paramdef>
      <H3>Parameter definition</H3></A>The parameter definition lets the user 
      choose the type of loss function, the optimizer parameters and the 
      training algorithm to use. The parameter definition starts with the line 
      <TT>@parameters</TT>. 
      <H4>Global parameters:</H4>
      <TABLE border=1>
        <TBODY>
        <TR>
          <TD>pattern</TD>
          <TD>use SVM for pattern recognition</TD></TR>
        <TR>
          <TD>regression</TD>
          <TD>use regression SVM <EM>(default)</EM></TD></TR>
        <TR>
          <TD>nu <EM>float</EM></TD>
          <TD>use nu-SVM with the given value of nu instead of normal SVM (see 
            <A 
            href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#Schoelkopf/etal/2000a">[Schoelkopf/etal/2000a]</A> 
            for details on nu-SVMs). 
        <TR>
          <TD>distribution</TD>
          <TD>estimate the support of the distribution of the training 
            examples (see <A 
            href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#schoelkopf/etal/99a">[Schoelkopf/etal/99a]</A>). 
            Nu must be set! 
        <TR>
          <TD>verbosity [1..5]</TD>
          <TD>ranges from 1 (no messages) over 3 (default) to 5 (flood, for 
            debugging only) </TD></TR>
        <TR>
          <TD>scale</TD>
          <TD>scale the training examples to mean 0 and variance 1 
        (default)</TD></TR>
        <TR>
          <TD>no_scale</TD>
          <TD>do not scale the training examples (may be numerically less 
            stable!)</TD></TR>
        <TR>
          <TD>format</TD>
          <TD>set the default example file format. See the description <A 
            href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#exampledef">here</A>.</TD></TR>
        <TR>
          <TD>delimiter</TD>
          <TD>set the default example file format. See the description <A 
            href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/#exampledef">here</A>.</TD></TR></TBODY></TABLE>
      <H4>Loss function:</H4>
      <TABLE border=1>
        <TBODY>
        <TR>
          <TD>C <EM>float</EM></TD>
          <TD>the SVM complexity constant (Note: C will be scaled by 1 / 
            number of training examples).</TD></TR>
        <TR>
          <TD>L+ <EM>float</EM></TD>
          <TD>penalize positive deviation (prediction too high) by this 
          factor</TD></TR>
        <TR>
          <TD>L- <EM>float</EM></TD>
          <TD>penalize negative deviation (prediction too low) by this 
          factor</TD></TR>
        <TR>
          <TD>epsilon <EM>float</EM></TD>
          <TD>insensitivity constant. No loss if prediction lies this close to 
            true value</TD></TR>
        <TR>
          <TD>epsilon+ <EM>float</EM></TD>
          <TD>epsilon for positive deviation only</TD></TR>
        <TR>
          <TD>epsilon- <EM>float</EM></TD>
          <TD>epsilon for negative deviation only</TD></TR>
        <TR>
          <TD>quadraticLoss+</TD>
          <TD>use quadratic loss for positive deviation</TD></TR>
        <TR>
          <TD>quadraticLoss-</TD>
          <TD>use quadratic loss for negative deviation</TD></TR>
        <TR>
          <TD>quadraticLoss</TD>
          <TD>use quadratic loss for both positive and negative 

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
99久久精品一区| 亚洲无人区一区| 亚洲日本护士毛茸茸| 一区二区三区欧美| 久久丁香综合五月国产三级网站| 国产精品视频看| 日韩激情一二三区| 色综合婷婷久久| 国产欧美日韩视频在线观看| 美女爽到高潮91| 91蝌蚪porny成人天涯| 亚洲人精品午夜| 99精品视频在线免费观看| 亚洲高清在线视频| 图片区日韩欧美亚洲| 91精品办公室少妇高潮对白| 另类小说欧美激情| 欧美亚洲一区二区三区四区| 欧美激情一区二区三区| 另类小说色综合网站| 欧美日韩国产高清一区二区三区| 亚洲色图视频免费播放| 丁香网亚洲国际| 久久久精品一品道一区| 极品少妇xxxx精品少妇偷拍 | 国产精品免费久久| 在线免费观看日本欧美| 久久亚洲一区二区三区四区| 日韩一区欧美二区| 欧美日韩一区二区三区高清| 自拍偷拍亚洲欧美日韩| 成人教育av在线| 国产精品久久久久久久蜜臀| 国产精品一二二区| 久久视频一区二区| 国产米奇在线777精品观看| 精品免费国产二区三区| 久久99国内精品| 欧美va在线播放| 伦理电影国产精品| 日韩女优av电影| 久久精品国内一区二区三区| 欧美大胆人体bbbb| 国产一区欧美日韩| 国产精品丝袜久久久久久app| 成人自拍视频在线| 亚洲欧美综合另类在线卡通| 99在线精品免费| 亚洲少妇屁股交4| 欧美三电影在线| 日本美女视频一区二区| 精品福利一区二区三区免费视频| 国产精品夜夜爽| 国产精品高潮呻吟久久| 99久久久精品| 五月天亚洲婷婷| 亚洲精品一区二区三区影院| 成人亚洲精品久久久久软件| 亚洲手机成人高清视频| 欧美高清hd18日本| 黑人巨大精品欧美黑白配亚洲| 国产亚洲一本大道中文在线| 91免费精品国自产拍在线不卡 | 亚洲成人在线免费| 欧美一区二区三区在线观看| 国产一区二区在线视频| 中文字幕一区在线观看视频| 色狠狠色噜噜噜综合网| 久久激情综合网| 中文字幕在线观看不卡| 91麻豆精品国产| 成人18视频日本| 日韩精品视频网| 国产精品人妖ts系列视频| 欧美色综合天天久久综合精品| 精品一区二区在线看| 亚洲色图自拍偷拍美腿丝袜制服诱惑麻豆 | 5858s免费视频成人| 国产福利一区二区三区视频在线 | 一区二区三区欧美激情| 精品国产成人系列| 欧美日韩在线精品一区二区三区激情| 久久9热精品视频| 亚洲精品日韩一| 久久久不卡影院| 欧美一区二区三区视频在线观看| 成人99免费视频| 国产精品自在欧美一区| 视频在线观看一区| 亚洲欧洲综合另类在线| 26uuuu精品一区二区| 欧美日韩国产在线观看| 99国产麻豆精品| 国产成人日日夜夜| 精品亚洲aⅴ乱码一区二区三区| 亚洲一二三区不卡| 亚洲日本乱码在线观看| 亚洲国产激情av| xfplay精品久久| 日韩午夜三级在线| 欧美日韩亚洲综合| 色婷婷综合久色| hitomi一区二区三区精品| 国产毛片精品视频| 99久久综合99久久综合网站| 国产精品996| 久久成人免费网站| 日韩av中文字幕一区二区| 亚洲h在线观看| 亚洲一区在线播放| 亚洲欧美另类小说视频| 国产精品乱码妇女bbbb| 国产欧美va欧美不卡在线 | 在线亚洲+欧美+日本专区| 成人一区在线看| 成人激情av网| 91丨九色丨黑人外教| av电影在线观看一区| 99精品视频在线观看| 91在线视频观看| 欧美在线播放高清精品| 色丁香久综合在线久综合在线观看| 9l国产精品久久久久麻豆| 成人av在线网站| 色婷婷综合久久久久中文| 在线观看亚洲精品视频| 欧美三级一区二区| 欧美精品视频www在线观看| 91麻豆精品国产91久久久久久| 欧美一区二区成人| 精品国产精品一区二区夜夜嗨| 久久久久高清精品| 综合激情成人伊人| 午夜精品一区二区三区三上悠亚| 日韩国产欧美一区二区三区| 久久99精品久久久久久| 国产精品系列在线播放| 91视频在线看| 91.麻豆视频| 久久蜜臀中文字幕| 亚洲欧美综合在线精品| 五月综合激情婷婷六月色窝| 蜜臀av亚洲一区中文字幕| 国产成人三级在线观看| 色噜噜狠狠色综合中国 | 欧美午夜电影一区| 欧美一级欧美三级| 久久久天堂av| 亚洲高清视频的网址| 国内精品久久久久影院薰衣草| 91在线精品秘密一区二区| 精品婷婷伊人一区三区三| 精品免费日韩av| 综合av第一页| 精品一区二区免费视频| 99综合电影在线视频| 91麻豆精品国产自产在线观看一区| 国产无遮挡一区二区三区毛片日本| 亚洲免费资源在线播放| 九色porny丨国产精品| av欧美精品.com| 欧美一区二区成人6969| 自拍偷拍亚洲综合| 国产一区二区在线看| 欧美写真视频网站| 国产精品区一区二区三区| 日本在线不卡视频| 色噜噜狠狠成人中文综合| www欧美成人18+| 视频在线观看91| 一本大道久久a久久精品综合| 欧美一卡二卡在线| 一区二区在线免费| 国产成人亚洲精品青草天美| 亚洲免费观看高清完整版在线 | 国产一区二区不卡在线| 欧美性猛交xxxx乱大交退制版| 亚洲国产成人一区二区三区| 久久精品国产成人一区二区三区| 色综合色综合色综合色综合色综合| 久久久久久免费网| 奇米777欧美一区二区| 色狠狠色噜噜噜综合网| 中文字幕精品一区| 国产一区二区三区精品欧美日韩一区二区三区 | 亚洲午夜激情网页| 91浏览器在线视频| 中文字幕一区av| 粉嫩蜜臀av国产精品网站| 精品国产凹凸成av人网站| 日日摸夜夜添夜夜添亚洲女人| 色拍拍在线精品视频8848| 国产精品理论在线观看| 丁香桃色午夜亚洲一区二区三区| 精品久久人人做人人爱| 日本va欧美va精品发布| 91精品视频网| 日韩电影在线观看网站| 7777精品久久久大香线蕉| 午夜精品福利久久久|