亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? mysvm.htm

?? 介紹支持向量機SVM介紹的參考文獻以及程序源代碼
?? HTM
?? 第 1 頁 / 共 2 頁
字號:
        deviation</TD></TR></TBODY></TABLE>
      <H4>Optimizer parameters:</H4>
      <TABLE border=1>
        <TBODY>
        <TR>
          <TD>working_set_size <EM>int</EM></TD>
          <TD>optimize this much examples in each iteration (default: 
10)</TD></TR>
        <TR>
          <TD>max_iterations <EM>int</EM></TD>
          <TD>stop after this much iterations</TD></TR>
        <TR>
          <TD>shrink_const <EM>int</EM></TD>
          <TD>fix a variable to the bound if it is optimal for this much 
            iterations</TD></TR>
        <TR>
          <TD>is_zero <EM>float</EM></TD>
          <TD>numerical precision (default: 1e-10)</TD></TR>
        <TR>
          <TD>descend <EM>float</EM></TD>
          <TD>make this much descend on the target function in each 
          iteration</TD></TR>
        <TR>
          <TD>convergence_epsilon <EM>float</EM></TD>
          <TD>precision on the KKT conditions (default: 1e-3 for pattern 
            recognition and 1e-4 for regression)</TD></TR>
        <TR>
          <TD>kernel_cache <EM>int</EM></TD>
          <TD>size of the cache for kernel evaluations im MB (default: 
        40)</TD></TR></TBODY></TABLE>
      <H4>Training algorithms</H4>
      <TABLE border=1>
        <TBODY>
        <TR>
          <TD>cross_validation <EM>int</EM></TD>
          <TD>do cross validation on the training examples with the given 
            number of chunks</TD></TR>
        <TR>
          <TD>cv_inorder</TD>
          <TD>do cross validation in the order the examples are given in</TD></TR>
        <TR>
          <TD>cv_window <EM>int</EM></TD>
          <TD>do cross validation by moving a window of the given number of 
            chunks over the training data. (Implies cv_inorder)</TD></TR>
        <TR>
          <TD>search_C <EM>[am]</EM></TD>
          <TD>find an optimal C in the range of cmin to cmax by 
            <STRONG>A</STRONG>dding or <STRONG>M</STRONG>ultiplying the current 
            C by cdelta</TD></TR>
        <TR>
          <TD>cmin</TD>
          <TD>lower bound for search_C</TD></TR>
        <TR>
          <TD>cmax</TD>
          <TD>upper bound for search_C</TD></TR>
        <TR>
          <TD>cdelta</TD>
          <TD>step size for search_C</TD></TR></TBODY></TABLE><A name=kerneldef>
      <H3>Kernel definition </H3></A>The kernel definition lets you choose the 
      type of kernel function to use and its parameters. It starts with the line 
      <TT>@kernel</TT>
      <P>
      <TABLE border=1>
        <TBODY>
        <TR>
          <TH>name</TH>
          <TH>kernel type</TH>
          <TH>parameters</TH></TR>
        <TR>
          <TD>dot</TD>
          <TD>inner product</TD>
          <TD>none</TD></TR>
        <TR>
          <TD>polynomial</TD>
          <TD>polynomial (x*y+1)^d</TD>
          <TD>degree <EM>int</EM></TD></TR>
        <TR>
          <TD>radial</TD>
          <TD>radial basis function exp(-gamma ||x-y||^2)</TD>
          <TD>gamma <EM>float</EM></TD></TR>
        <TR>
          <TD>neural</TD>
          <TD>two layered neural net tanh(a x*y+b)</TD>
          <TD>a <EM>float</EM>, b <EM>float</EM></TD></TR>
        <TR>
          <TD>anova</TD>
          <TD>(RBF) anova kernel</TD>
          <TD>gamma <EM>float&gt;/em&gt;, degree <EM>int</EM></EM></TD></TR>
        <TR>
          <TD>user</TD>
          <TD>user definable kernel</TD>
          <TD>param_i_1 ... param_i_5 <EM>int</EM>, param_f_1 ... param_f_5 
            <EM>float</EM></TD></TR>
        <TR>
          <TD>user2</TD>
          <TD>user definable kernel 2</TD>
          <TD>param_i, param_f</TD></TR>
        <TR>
          <TD>sum_aggregation</TD>
          <TD>sum of other kernels</TD>
          <TD>number_parts <EM>int</EM>, range <EM>int</EM> <EM>int</EM>, 
            followed by <TT>number_parts</TT> kernel definitions</TD></TR>
        <TR>
          <TD>prod_aggregation</TD>
          <TD>product of other kernels</TD>
          <TD>number_parts <EM>int</EM>, range <EM>int</EM> <EM>int</EM>, 
            followed by <TT>number_parts</TT> kernel 
      definitions</TD></TR></TBODY></TABLE><A name=exampledef>
      <H3>Example sets </H3></A>An example set consists of the learning 
      attributes for each example, its classification (or functional value) and 
      its lagrangian multiplier (actually, you don't need to supply the 
      lagrangian multiplier for training and you don't even have to supply the 
      functional value for prediction. But you could). The examples can be given 
      in two different formats: dense and sparse. Note that you can change the 
      data format 
      <P>The examples set definition starts with <TT>@examples</TT>. Note that 
      each example has to be in an own line. 
      <P>WARNING: Giving real number you can also use a colon instead of a 
      decimal dot ("<TT>1234,56</TT>" instead of "<TT>1234.56</TT>", german 
      style). Therefore something like "<TT>1,234.56</TT>" does not work! 
      <H4>common parameters:</H4>
      <TABLE border=1>
        <TBODY>
        <TR>
          <TD>format <EM>F</EM></TD>
          <TD>Format of examples where <EM>F</EM> is either "sparse" or a 
            string containing "x", "y" or "a". The format strings define the 
            position of the attributes <EM>x</EM>, the funtional value 
            <EM>y</EM> and the lagrangian multiplier <EM>a</EM> in an example. 
            "x" has to be set. The default format is "yx", but you can set 
            another default in the parameters definition.</TD></TR>
        <TR>
          <TD>dimension <EM>int</EM></TD>
          <TD>number of attributes. If the dimension is not given it is set 
            from the examples (maximum dimension in sparse format, dimension 
            from the first line in dense format).</TD></TR>
        <TR>
          <TD>number <EM>int</EM></TD>
          <TD>total number of examples. A warning is issued when a wrong 
            number of examples is given</TD></TR>
        <TR>
          <TD>b <EM>float</EM></TD>
          <TD>additional constant of the hyperplane</TD></TR>
        <TR>
          <TD>delimiter <EM>char</EM></TD>
          <TD>character by which the attributes of an example are separated 
            (default: space). You can set a default in the parameters section. 
            Be careful if you set the delimiter to "," or 
      "."!</TD></TR></TBODY></TABLE>
      <H4>sparse format:</H4>In the sparse data format, only non-zero attributes 
      have to be given. For each non-zero attribute you give its attribute 
      number (starting at 1) and its value, separated by a colon. The functional 
      value is given by y:<EM>float</EM> (the "y:" is optional here!) and the 
      lagrangian multiplier by a:<EM>float</EM>. 
      <P>Example: The following lines all define the same example: 
      <UL>
        <LI><SAMP>1:-1 2:0 3:1.2 y:2 a:0</SAMP> 
        <LI><SAMP>3:1.2 y:2 1:-1</SAMP> 
        <LI><SAMP>3:1.2 2 1:-1</SAMP> </LI></UL>
      <H4>dense format</H4>The dense format consists of all attributes and (if 
      defined so) the functional values and the lagrangian multipliers listed in 
      the order given by the <TT>format</TT> parameter. 
      <P>Example: The following lines all define the same example as above: 
      <UL>
        <LI>With "<SAMP>format yx</SAMP>" (default) : "<SAMP>2 -1 0 1.2</SAMP>" 
        <LI>With "<SAMP>format xya</SAMP>" it is "<SAMP>-1 0 1.2 2 0</SAMP>" 
        <LI>And with "<SAMP>format xy</SAMP>" and "<SAMP>delimiter ','</SAMP>" 
        the example reads "<SAMP>-1,,1.2,2</SAMP>" </LI></UL>
      <H2>References </H2><!-- literatur bibkey Joachims/99a -or bibkey Vapnik/98a -or bibkey Schoelkopf/etal/2000a -or bibkey schoelkopf/etal/99a -->
      <TABLE>
        <TBODY>
        <TR>
          <TD vAlign=top><A 
            name=Schoelkopf/etal/2000a>[Schoelkopf/etal/2000a]</A></TD>
          <TD vAlign=top>Sch&ouml;lkopf, Bernhard and Smola, Alex J. and 
            Williamson, Robert C. and Bartlett, Peter L., <I>New Support Vector 
            Algorithms</I>. Neural Computation, Vol. 12, 2000.<BR></TD></TR>
        <TR>
          <TD vAlign=top><A name=Joachims/99a>[Joachims/99a]</A></TD>
          <TD vAlign=top>T. Joachims, 11 in: <I>Making large-Scale SVM 
            Learning Practical</I>. Advances in Kernel Methods - Support Vector 
            Learning, B. Sch&ouml;lkopf and C. Burges and A. Smola (ed.), MIT Press, 
            1999.<BR><A 
            href="http://www-ai.cs.uni-dortmund.de/DOKUMENTE/joachims_99a.ps.gz">Online 
            [Postscript (gz)]</A> &nbsp;<A 
            href="http://www-ai.cs.uni-dortmund.de/DOKUMENTE/joachims_99a.pdf">[PDF]</A> 
            &nbsp; </TD></TR>
        <TR>
          <TD vAlign=top><A 
          name=Schoelkopf/etal/99a>[Schoelkopf/etal/99a]</A></TD>
          <TD vAlign=top>Sch&ouml;lkopf, Bernhard and Williamson, Robert C. and 
            Smola, Alex J. and Shawe-Taylor, John, <I>SV Estimation of a 
            Distribution's Support</I>. Neural Information Processing Systems 
            12, Solla, S.A. and Leen, T.K. and Müller, K.-R. (ed.), MIT Press, 
            2000, forthcoming.<BR></TD></TR>
        <TR>
          <TD vAlign=top><A name=Vapnik/98a>[Vapnik/98a]</A></TD>
          <TD vAlign=top>V. Vapnik, <I>Statistical Learning Theory</I>. Wiley, 
            1998.<BR></TD></TR></TBODY></TABLE><!-- /literatur --><!-- footer --></TD>
    <TD>&nbsp;&nbsp;</TD></TR>
  <TR>
    <TD colSpan=3>&nbsp;</TD></TR></TBODY></TABLE>
<TABLE border=0 cellPadding=0 cellSpacing=0 width="100%">
  <TBODY>
  <TR>
    <TD bgColor=#99cdff height=25 noWrap vAlign=bottom><A 
      href="http://www-ai.cs.uni-dortmund.de/index.eng.html" 
      onmousedown="imgClick('img_bot_ls8news'); return true" 
      onmouseout="imgNormal('img_bot_ls8news'); return true" 
      onmouseover="imgOver('img_bot_ls8news'); return true"><IMG alt="LS8 News" 
      border=0 height=25 name=img_bot_ls8news src="mySVM.files/ls8news.gif" 
      width=77></A> &nbsp; <A 
      href="http://www-ai.cs.uni-dortmund.de/FORSCHUNG/index.eng.html" 
      onmousedown="imgClick('img_bot_forschung'); return true" 
      onmouseout="imgNormal('img_bot_forschung'); return true" 
      onmouseover="imgOver('img_bot_forschung'); return true"><IMG alt=Research 
      border=0 height=25 name=img_bot_forschung 
      src="mySVM.files/forschung.eng.gif" width=82></A><A 
      href="http://www-ai.cs.uni-dortmund.de/SOFTWARE/index.eng.html" 
      onmousedown="imgClick('img_bot_software'); return true" 
      onmouseout="imgNormal('img_bot_software'); return true" 
      onmouseover="imgOver('img_bot_software'); return true"><IMG alt=Software 
      border=0 height=25 name=img_bot_software src="mySVM.files/software.gif" 
      width=83></A><A 
      href="http://www-ai.cs.uni-dortmund.de/PARTNER/index.eng.html" 
      onmousedown="imgClick('img_bot_partner'); return true" 
      onmouseout="imgNormal('img_bot_partner'); return true" 
      onmouseover="imgOver('img_bot_partner'); return true"><IMG alt=Partner 
      border=0 height=25 name=img_bot_partner src="mySVM.files/partner.gif" 
      width=73></A> &nbsp; <A 
      href="http://www-ai.cs.uni-dortmund.de/LEHRE/lehre.html" 
      onmousedown="imgClick('img_bot_lehre'); return true" 
      onmouseout="imgNormal('img_bot_lehre'); return true" 
      onmouseover="imgOver('img_bot_lehre'); return true"><IMG alt=Teaching 
      border=0 height=25 name=img_bot_lehre src="mySVM.files/lehre.eng.gif" 
      width=79></A> &nbsp; <A 
      href="http://www-ai.cs.uni-dortmund.de/PERSONAL/personal.eng.html" 
      onmousedown="imgClick('img_bot_personal'); return true" 
      onmouseout="imgNormal('img_bot_personal'); return true" 
      onmouseover="imgOver('img_bot_personal'); return true"><IMG alt=Staff 
      border=0 height=25 name=img_bot_personal 
      src="mySVM.files/personal.eng.gif" width=54></A><A 
      href="http://www-ai.cs.uni-dortmund.de/UNIVERSELL/index.eng.html" 
      onmousedown="imgClick('img_bot_allgemein'); return true" 
      onmouseout="imgNormal('img_bot_allgemein'); return true" 
      onmouseover="imgOver('img_bot_allgemein'); return true"><IMG alt=General 
      border=0 height=25 name=img_bot_allgemein 
      src="mySVM.files/allgemein.eng.gif" width=74></A><A 
      href="http://www-ai.cs.uni-dortmund.de/INTERN/intern.html" 
      onmousedown="imgClick('img_bot_intern'); return true" 
      onmouseout="imgNormal('img_bot_intern'); return true" 
      onmouseover="imgOver('img_bot_intern'); return true"><IMG alt=Internal 
      border=0 height=25 name=img_bot_intern src="mySVM.files/intern.eng.gif" 
      width=85></A></TD>
    <TD align=middle bgColor=#99cdff><SMALL>Hits:</SMALL> <IMG 
      src="mySVM.files/server-cntr.gif"></TD>
    <TD align=right bgColor=#99cdff height=25 noWrap vAlign=bottom><A 
      href="http://www-ai.cs.uni-dortmund.de/Harvest/brokers/www-ai/query.eng.html" 
      onmousedown="imgClick('img_bot_search'); return true" 
      onmouseout="imgNormal('img_bot_search'); return true" 
      onmouseover="imgOver('img_bot_search'); return true"><IMG alt=Search 
      border=0 height=25 name=img_bot_search src="mySVM.files/search.gif" 
      width=30></A><A href="mailto:webadmin@ls8.cs.uni-dortmund.de" 
      onmousedown="imgClick('img_bot_mail'); return true" 
      onmouseout="imgNormal('img_bot_mail'); return true" 
      onmouseover="imgOver('img_bot_mail'); return true"><IMG 
      alt="Send email to webadmin@ls8.cs.uni-dortmund.de" border=0 height=25 
      name=img_bot_mail src="mySVM.files/mail.gif" width=38></A><IMG 
      alt="no german" border=0 height=25 src="mySVM.files/no_deutsch.gif" 
      width=32></TD></TR></TBODY></TABLE><!-- /footer --></BODY></HTML>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美综合久久久| 国产精品123区| 欧美日本韩国一区| 五月开心婷婷久久| 欧美电影免费观看高清完整版在| 精品亚洲aⅴ乱码一区二区三区| 欧美电影免费提供在线观看| 国产一区免费电影| 国产午夜精品在线观看| 99精品视频一区二区| 一区二区三区四区视频精品免费 | 国产成人精品免费| 欧美高清一级片在线观看| 色噜噜久久综合| 日本伊人色综合网| 国产精品看片你懂得| 欧美这里有精品| 狠狠色狠狠色综合| 亚洲三级电影网站| 欧美高清hd18日本| 国产精品一区二区在线观看不卡 | 精品少妇一区二区三区免费观看| 国产精品中文欧美| 亚洲美女视频在线| 精品精品国产高清a毛片牛牛| 成人免费视频一区| 同产精品九九九| 国产精品三级电影| 欧美精品自拍偷拍| 国产成人aaaa| 日韩福利视频网| 亚洲欧洲在线观看av| 欧美一级搡bbbb搡bbbb| 成人h版在线观看| 青椒成人免费视频| 国产精品不卡视频| 日韩视频在线永久播放| heyzo一本久久综合| 青草国产精品久久久久久| 自拍偷拍国产亚洲| 久久先锋影音av鲁色资源网| 色综合激情五月| 热久久免费视频| 亚洲精品久久嫩草网站秘色| 久久综合视频网| 欧美日韩成人一区| 91免费观看在线| 黄网站免费久久| 天天色 色综合| 一区二区视频在线看| 久久久久九九视频| 日韩一级片在线播放| 色94色欧美sute亚洲线路二| 久久99最新地址| 日韩不卡手机在线v区| 亚洲激情在线播放| 国产精品伦一区| 久久久久免费观看| 欧美一级高清大全免费观看| 精品视频在线看| 在线视频一区二区三| 91网上在线视频| 成人av中文字幕| 国产二区国产一区在线观看| 久久99这里只有精品| 青青草国产成人av片免费| 婷婷国产v国产偷v亚洲高清| 亚洲精品国产一区二区精华液| 国产日韩欧美a| 久久久久国色av免费看影院| 337p粉嫩大胆色噜噜噜噜亚洲| 欧美日韩aaa| 欧美日韩另类国产亚洲欧美一级| 色呦呦日韩精品| 色网站国产精品| 色综合婷婷久久| 在线观看一区二区视频| 色婷婷综合久久久久中文一区二区 | 91在线精品一区二区三区| 岛国一区二区在线观看| 国产白丝精品91爽爽久久| 国产一区欧美一区| 国产mv日韩mv欧美| 成人免费av资源| 91色在线porny| 欧美午夜片在线观看| 色婷婷综合久色| 欧美日韩www| 日韩一区二区精品| 久久精品一区二区三区不卡牛牛| 26uuu亚洲综合色| 国产日产亚洲精品系列| 综合电影一区二区三区| 一区二区在线观看视频在线观看| 亚洲国产一区二区a毛片| 午夜亚洲国产au精品一区二区| 日韩高清中文字幕一区| 久久99热这里只有精品| 国产二区国产一区在线观看| 99久久综合99久久综合网站| 欧美综合久久久| 欧美成人艳星乳罩| 国产精品二区一区二区aⅴ污介绍| 国产精品乱码一区二区三区软件| 亚洲色图清纯唯美| 亚洲国产视频一区二区| 激情小说欧美图片| 成人高清伦理免费影院在线观看| 欧美这里有精品| 久久影音资源网| 综合网在线视频| 午夜精品久久久久久久99水蜜桃| 老司机免费视频一区二区三区| 国产+成+人+亚洲欧洲自线| 在线观看日韩高清av| 欧美成人免费网站| 自拍av一区二区三区| 日韩1区2区日韩1区2区| 成人av在线播放网址| 欧美视频一区二区三区四区| 精品国产一区久久| 一区二区高清视频在线观看| 九九国产精品视频| 色综合久久久久综合体桃花网| 91麻豆精品国产自产在线| 国产欧美精品区一区二区三区 | 成人综合婷婷国产精品久久蜜臀| 色婷婷av一区二区三区之一色屋| 精品欧美久久久| 一区二区三区在线播放| 国产露脸91国语对白| 欧美日韩国产区一| 中文字幕亚洲综合久久菠萝蜜| 日本不卡1234视频| 91福利国产精品| 欧美韩日一区二区三区| 久久er精品视频| 欧美日韩性生活| 亚洲视频一二三区| 国内精品久久久久影院色| 欧美色男人天堂| 亚洲欧美日韩小说| 风间由美性色一区二区三区| 欧美成人猛片aaaaaaa| 亚洲一卡二卡三卡四卡无卡久久| 风间由美一区二区av101| 日韩一区二区三区视频在线 | 精品成人私密视频| 日韩综合在线视频| 色综合久久99| 国产精品美女视频| 丰满亚洲少妇av| 国产亚洲综合色| 精品无人区卡一卡二卡三乱码免费卡 | 国产精品色哟哟网站| 精品一区二区国语对白| 日韩视频在线永久播放| 亚洲第一福利一区| 欧美三级电影精品| 一区二区三区精品| 色综合久久综合网97色综合| 国产精品电影一区二区| 成人天堂资源www在线| 国产日韩精品一区二区浪潮av| 韩国女主播成人在线| 日韩女优毛片在线| 久久不见久久见免费视频7| 欧美不卡视频一区| 看国产成人h片视频| 欧美一卡2卡3卡4卡| 日本不卡一二三区黄网| 日韩一区二区精品| 激情综合一区二区三区| 日韩精品专区在线| 国产一区二区0| 久久精品视频在线看| 国产.精品.日韩.另类.中文.在线.播放| 精品国产露脸精彩对白| 国产成人免费在线观看不卡| 国产欧美综合色| 波多野结衣一区二区三区 | 亚洲激情av在线| 欧美日韩亚洲不卡| 美女脱光内衣内裤视频久久网站 | 日韩一区二区精品| 久久成人免费日本黄色| 国产亚洲va综合人人澡精品 | 亚洲国产精品久久久久婷婷884| 在线影院国内精品| 美国毛片一区二区| 日本一区二区免费在线| 97se亚洲国产综合自在线观| 亚洲国产精品久久人人爱| 日韩一级大片在线观看| 国产精品综合一区二区三区| 欧美国产亚洲另类动漫| 欧美日韩在线不卡| 国产一区二区三区观看| 亚洲欧洲韩国日本视频 | 久久亚洲一级片|