?? trainreg.100.log
字號:
kies(.../software/mySVM-www)226> mysvm examples/param.dat examples/trainreg.100.dat
Reading examples/param.dat
Reading examples/trainreg.100.dat
read 100 examples, dimension = 11.
RSVM generated
Training started with C = 1000.
...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
..................................................................................................................................................................................
.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................................
............................................................................................................
..........
......
*** Convergence
Done training: 2009 iterations.
Target function: -17.971194
----------------------------------------
The results are valid with an epsilon of 8.4349607e-05 on the KKT conditions.
Average loss : 8.4771035e-07 (loo-estim: 1.0221924)
Avg. loss pos : 8.4349607e-05 (1 occurences)
Avg. loss neg : 8.4285601e-08 (5 occurences)
Support Vectors : 12
Bounded SVs : 0
min SV: -0.53339822
max SV: 0.33696135
|w| = 5.9905279
max |x| = 3.7772059
VCdim <= 512.00184
w[0] = 0.00062161486
w[1] = 0.29593452
w[2] = 0.5544862
w[3] = 0.83351002
w[4] = 1.1657402
w[5] = 1.4602862
w[6] = 1.7548449
w[7] = 2.0309052
w[8] = 2.507107
w[9] = 2.8145319
w[10] = 3.1454786
b = 17.029053
Time for learning:
init : 0s
optimizer : 1s
convergence : 0s
update ws : 0s
calc ws : 0s
=============
all : 2s
Saving trained SVM to examples/trainreg.100.dat.svm
mysvm ended successfully.
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -