?? epsilon_svr_sim.m
字號(hào):
function Yd = Epsilon_SVR_Sim(svm,Xt)
% 輸入?yún)?shù):
% svm 支持向量機(jī)(結(jié)構(gòu)體變量)
% the following fields:
% ker - 核參數(shù)
% type - linear : k(x,y) = x'*y
% poly : k(x,y) = (x'*y+c)^d
% gauss : k(x,y) = exp(-0.5*(norm(x-y)/s)^2)
% tanh : k(x,y) = tanh(g*x'*y+c)
% degree - Degree d of polynomial kernel (positive scalar).
% offset - Offset c of polynomial and tanh kernel (scalar, negative for tanh).
% width - Width s of Gauss kernel (positive scalar).
% gamma - Slope g of the tanh kernel (positive scalar).
% x - 訓(xùn)練樣本
% y - 訓(xùn)練目標(biāo);
% a - 拉格朗日乘子
%
% Xt 測(cè)試樣本,n×d的矩陣,n為樣本個(gè)數(shù),d為樣本維數(shù)
% 輸出參數(shù):
% Yd 測(cè)試輸出,n×1的矩陣,n為樣本個(gè)數(shù),值為+1或-1
% ------------------------------------------------------------%
ker = svm.ker;
X = svm.x;
Y = svm.y;
a = svm.a; % 這里實(shí)際值為 a(1:n)-a(n+1:end),見(jiàn)文件"Epsilon_SVR_Train.m"第56行
% ------------------------------------------------------------%
% 求 b
epsilon = 1e-8; % 如果"絕對(duì)值"小于此值則認(rèn)為是0
i_sv = find(abs(a)>epsilon); % 支持向量下標(biāo),這里對(duì)abs(a)進(jìn)行判定
tmp = a'*Calckernel(ker,X,X(i_sv,:)); % 行向量
b = Y(i_sv)-tmp'; % 符號(hào)不一樣,決策函數(shù)就不一樣,實(shí)際上是一回事!見(jiàn)文件"Epsilon_SVR_Train.m"第33行
%b = Y(i_sv)+tmp';
b = mean(b);
% ------------------------------------------------------------%
% 測(cè)試輸出
nt = size(Xt,1); % 測(cè)試樣本數(shù)
tmp = a'*Calckernel(ker,X,Xt); % 符號(hào)不一樣,決策函數(shù)就不一樣,實(shí)際上是一回事!見(jiàn)文件"Epsilon_SVR_Train.m"第33行
%tmp = -a'*Calckernel(ker,X,Xt);
Yd = (tmp+b)';
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -