亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? learn_hmm.m

?? 隱馬爾科夫模型對文本信息進行抽取利用MATLAB實現
?? M
字號:
function [LL, prior, transmat, obsmat, gamma] = learn_hmm(data, prior, transmat, obsmat, max_iter, thresh, ...						  verbose, act, adj_prior, adj_trans, adj_obs, dirichlet)% LEARN_HMM Find the ML parameters of an HMM with discrete outputs using EM.%% [LL, PRIOR, TRANSMAT, OBSMAT] = LEARN_HMM(DATA, PRIOR0, TRANSMAT0, OBSMAT0) computes ML% estimates of the following parameters, where, for each time t, Q(t) is the hidden state, and% Y(t) is the observation%   prior(i) = Pr(Q(1) = i)%   transmat(i,j) = Pr(Q(t+1)=j | Q(t)=i)%   obsmat(i,o) = Pr(Y(t)=o | Q(t)=i)% PRIOR0 is the initial estimate of PRIOR, etc.%% Row l of DATA is the observation sequence for example l. If the sequences are of% different lengths, you can pass in a cell array, so DATA{l} is a vector.% If there is only one sequence, the estimate of prior will be poor.% If all the sequences are of length 1, transmat cannot be estimated.%% LL is the "learning curve": a vector of the log likelihood values at each iteration.%% There are several optional arguments, which should be passed in the following order%   LEARN_HMM(DATA, PRIOR, TRANSMAT, OBSMAT, MAX_ITER, THRESH, VERBOSE)% These have the following meanings%   max_iter = max. num EM steps to take (default 10)%   thresh = threshold for stopping EM (default 1e-4)%   verbose = 0 to suppress the display of the log lik at each iteration (Default 1).%% If the transition matrix is non-stationary (e.g., as in a POMDP),% then TRANSMAT should be a cell array, where T{a}(i,j) = Pr(Q(t+1)=j|Q(t)=i,A(t)=a).% The last arg should specify the sequence of actions in the same form as DATA:%   LEARN_HMM(DATA, PRIOR, TRANSMAT, OBSMAT, MAX_ITER, THRESH, VERBOSE, As)% The action at time 1 is ignored.%% If you want to clamp some of the parameters at fixed values, set the corresponding adjustable% argument to 0 (default: everything is adjustable)%   LEARN_HMM(..., VERBOSE, As, ADJ_PRIOR, ADJ_TRANS, ADJ_OBS)%% To avoid 0s when estimating OBSMAT, specify a non-zero equivalent sample size (e.g., 0.01) for% the Dirichlet prior: LEARN_HMM(..., ADJ_OBS, DIRICHLET)%% When there is a single sequence, the smoothed posteriors using the penultimate set of% parameters are returned in GAMMA:%   [LL, PRIOR, TRANSMAT, OBSMAT, GAMMA] = LEARN_HMM(...)% This can be useful for online learning and decision making.if ~exist('max_iter'), max_iter = 10; endif ~exist('thresh'), thresh = 1e-4; endif ~exist('verbose'), verbose = 1; endif ~exist('adj_prior'), adj_prior = 1; endif ~exist('adj_trans'), adj_trans = 1; endif ~exist('adj_obs'), adj_obs = 1; endif ~exist('dirichlet'), dirichlet = 0; endif ~exist('act'),  act = [];  A = 0;else  A = length(transmat);endprevious_loglik = -inf;loglik = 0;converged = 0;num_iter = 1;LL = [];if ~iscell(data)  data = num2cell(data, 2); % each row gets its own cellendif ~isempty(act) & ~iscell(act)  act = num2cell(act, 2);endnumex = length(data);while (num_iter <= max_iter) & ~converged  % E step  [loglik, exp_num_trans, exp_num_visits1, exp_num_emit, gamma] = ...      compute_ess(prior, transmat, obsmat, data, act, dirichlet);  if verbose, fprintf(1, 'iteration %d, loglik = %f\n', num_iter, loglik); end  num_iter =  num_iter + 1;  % M step  if adj_prior    prior = normalise(exp_num_visits1);  end  if adj_trans & ~isempty(exp_num_trans)    if isempty(act)      transmat = mk_stochastic(exp_num_trans);    else      for a=1:A	transmat{a} = mk_stochastic(exp_num_trans{a});      end    end  end  if adj_obs    obsmat = mk_stochastic(exp_num_emit);  end    converged = em_converged(loglik, previous_loglik, thresh);  previous_loglik = loglik;  LL = [LL loglik];end%%%%%%%%%%%function [loglik, exp_num_trans, exp_num_visits1, exp_num_emit, gamma] = ...    compute_ess(prior, transmat, obsmat, data, act, dirichlet)%% Compute the Expected Sufficient Statistics for a discrete Hidden Markov Model.%% Outputs:% exp_num_trans(i,j) = sum_l sum_{t=2}^T Pr(X(t-1) = i, X(t) = j| Obs(l))% exp_num_visits1(i) = sum_l Pr(X(1)=i | Obs(l))% exp_num_emit(i,o) = sum_l sum_{t=1}^T Pr(X(t) = i, O(t)=o| Obs(l))% where Obs(l) = O_1 .. O_T for sequence l.numex = length(data);[S O] = size(obsmat);if isempty(act)  exp_num_trans = zeros(S,S);  A = 0;else  A = length(transmat);  exp_num_trans = cell(1,A);  for a=1:A    exp_num_trans{a} = zeros(S,S);  endendexp_num_visits1 = zeros(S,1);exp_num_emit = dirichlet*ones(S,O);loglik = 0;estimated_trans = 0;for ex=1:numex  obs = data{ex};  T = length(obs);  olikseq = mk_dhmm_obs_lik(obs, obsmat);  if isempty(act)    [alpha, beta, gamma, xi, current_ll] = forwards_backwards(prior, transmat, olikseq);  else    [alpha, beta, gamma, xi, current_ll] = forwards_backwards(prior, transmat, olikseq, [], [], act{ex});  end  loglik = loglik +  current_ll;   if T > 1    estimated_trans = 1;    if isempty(act)      exp_num_trans = exp_num_trans + sum(xi,3);    else      % act(2) determines Q(2), xi(:,:,1) holds P(Q(1), Q(2))      A = length(transmat);      for a=1:A	ndx = find(act{ex}(2:end)==a);	if ~isempty(ndx)	  exp_num_trans{a} = exp_num_trans{a} + sum(xi(:,:,ndx), 3);	end      end    end  end    exp_num_visits1 = exp_num_visits1 + gamma(:,1);    if T < O    for t=1:T      o = obs(t);      exp_num_emit(:,o) = exp_num_emit(:,o) + gamma(:,t);    end  else    for o=1:O      ndx = find(obs==o);      if ~isempty(ndx)	exp_num_emit(:,o) = exp_num_emit(:,o) + sum(gamma(:, ndx), 2);      end    end  endendif ~estimated_trans  exp_num_trans = [];end

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产麻豆91精品| 中文字幕在线一区免费| 欧美精选午夜久久久乱码6080| 欧美日韩中文字幕一区二区| 欧美精品一区二区三区在线| 中文字幕国产一区| 国产精品综合在线视频| 欧美亚日韩国产aⅴ精品中极品| 精品国产3级a| 国产99久久久精品| 欧美日韩视频在线第一区 | 国产精品美女久久久久高潮| 亚洲成人综合网站| 国产精品影视网| 国产精品入口麻豆九色| 色综合久久久久久久久久久| 欧美va日韩va| 五月天欧美精品| 一本大道久久a久久综合| 亚洲第一搞黄网站| 精品国产精品一区二区夜夜嗨| 国产成人8x视频一区二区| 亚洲视频在线一区| 高清不卡一二三区| 亚洲国产精品久久久男人的天堂 | 视频一区免费在线观看| 东方欧美亚洲色图在线| 亚洲精品国产成人久久av盗摄 | 奇米影视7777精品一区二区| 欧美日韩综合不卡| 国产精品中文欧美| 亚洲午夜久久久久久久久久久 | 91久久精品一区二区| 国产精品护士白丝一区av| 欧美日精品一区视频| 高清不卡在线观看av| 日韩高清不卡一区| 欧美一区日韩一区| 午夜视频在线观看一区| 欧美激情在线看| 91精品国产全国免费观看| 91美女片黄在线观看91美女| 亚洲欧洲成人自拍| 91美女片黄在线观看91美女| 久久国产尿小便嘘嘘| 久久中文字幕电影| 国产91精品精华液一区二区三区 | 中文字幕欧美国产| 日韩欧美成人一区| 国产伦精品一区二区三区免费 | 99久久精品国产一区二区三区| 成人免费在线视频观看| 精品入口麻豆88视频| 欧美亚洲国产一区二区三区va| 成人精品亚洲人成在线| 亚洲精品水蜜桃| 国产精品美女www爽爽爽| 精品99一区二区三区| 欧美精品1区2区3区| 日本国产一区二区| 成人午夜看片网址| 国产精品1024| 亚洲激情综合网| 亚洲欧洲日韩综合一区二区| 久久久久久亚洲综合| av在线不卡网| 日韩国产欧美在线播放| 亚洲成人免费看| 亚洲国产日韩一级| 亚洲在线免费播放| 久久久午夜精品理论片中文字幕| 在线不卡中文字幕播放| 欧美日韩在线亚洲一区蜜芽| 91国在线观看| 欧美日韩一区二区三区在线| 欧美婷婷六月丁香综合色| 欧美性猛交xxxx黑人交| 在线观看三级视频欧美| 国产精品一二一区| 国产精品中文字幕欧美| 成人小视频在线| www..com久久爱| 色综合欧美在线| 日本高清成人免费播放| 在线观看欧美精品| 欧美美女网站色| 日韩欧美亚洲一区二区| 精品国产一区a| 欧美国产欧美亚州国产日韩mv天天看完整| 精品国产污网站| 国产日韩欧美精品在线| 欧美精品v国产精品v日韩精品| 欧美高清你懂得| 日韩欧美123| 久久久精品影视| 亚洲日本一区二区| 亚洲午夜久久久久久久久久久| 日本一区中文字幕 | 午夜精品久久久久久久99樱桃 | 精品一区二区三区在线观看| 亚洲欧洲综合另类| 国产色综合久久| 欧美一区二区在线看| 精品国产污网站| 亚洲人成网站在线| 日本不卡123| 成人免费三级在线| 欧美三级中文字| 精品国产麻豆免费人成网站| 欧美国产精品久久| 日韩在线一区二区| 国产露脸91国语对白| 在线观看日韩毛片| 2017欧美狠狠色| 一区二区三区精品视频| 亚洲精选一二三| 美女www一区二区| 久久国产免费看| 91丨九色porny丨蝌蚪| 日韩一区二区三区在线视频| 日韩一区二区在线看片| 国产精品理论片| 蜜臀国产一区二区三区在线播放| 国产69精品久久久久毛片| 欧美情侣在线播放| 欧美成人aa大片| 一区二区高清视频在线观看| 久久99蜜桃精品| 欧美在线视频你懂得| 久久久久久久久久久久久久久99| 亚洲激情图片一区| 国产成a人亚洲| 日韩午夜激情av| 亚洲国产欧美日韩另类综合 | 一区二区免费在线播放| 国产在线播精品第三| 欧美精品免费视频| 亚洲九九爱视频| 波多野结衣在线一区| caoporm超碰国产精品| 欧美一级夜夜爽| 亚洲午夜电影在线观看| 91丨九色丨蝌蚪丨老版| 国产清纯白嫩初高生在线观看91 | 欧美日本一区二区| 亚洲青青青在线视频| 国产91高潮流白浆在线麻豆| 精品欧美黑人一区二区三区| 日韩精品高清不卡| 欧美日韩国产片| 亚洲成人免费看| 在线精品视频免费观看| 亚洲猫色日本管| 91免费精品国自产拍在线不卡| 国产欧美精品一区二区色综合朱莉| 日韩av一区二区在线影视| 欧美日韩国产系列| 亚洲成人资源网| 欧美日韩aaaaa| 视频一区欧美精品| 6080亚洲精品一区二区| 国产欧美va欧美不卡在线| 黄色日韩网站视频| 欧洲生活片亚洲生活在线观看| 亚洲青青青在线视频| 91天堂素人约啪| 一区二区三区久久| 欧美日韩高清在线| 日韩影院精彩在线| 51精品国自产在线| 免费观看成人鲁鲁鲁鲁鲁视频| 91精品国产综合久久久久久| 日韩成人精品视频| 精品国产三级电影在线观看| 国产麻豆成人精品| 国产精品美女久久福利网站| 91玉足脚交白嫩脚丫在线播放| 亚洲男同性视频| 欧美精品久久一区| 老司机免费视频一区二区| 精品伦理精品一区| 国内精品国产三级国产a久久 | 18成人在线视频| 91成人在线观看喷潮| 亚洲v精品v日韩v欧美v专区 | 欧美视频完全免费看| 人人爽香蕉精品| www激情久久| 91在线视频观看| 日韩av中文字幕一区二区三区| 日韩午夜激情免费电影| 成人综合在线网站| 一区二区三区欧美日韩| 日韩免费电影一区| 国产成人av资源| 伊人婷婷欧美激情| 欧美一级免费观看| 成人一区在线看| 亚洲成a人片综合在线| 久久久精品综合|