亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? mvr.rd

?? 做主成分回歸和偏最小二乘回歸
?? RD
字號:
%% $Id: mvr.Rd 132 2007-08-24 09:21:05Z bhm $\encoding{latin1}\name{mvr}\alias{mvr}\alias{pcr}\alias{plsr}\title{Partial Least Squares and Principal Component Regression}\description{  Functions to perform partial least squares regression (PLSR) or  principal component regression (PCR), with a formula interface.  Cross-validation can be used.  Prediction, model extraction, plot,  print and summary methods exist.}%% FIXME: Maybe use a \synopsis section, and show typical uses in \usage:\usage{mvr(formula, ncomp, data, subset, na.action,    method = pls.options()$mvralg,    scale = FALSE, validation = c("none", "CV", "LOO"),    model = TRUE, x = FALSE, y = FALSE, \dots)plsr(\dots, method = pls.options()$plsralg)pcr(\dots, method = pls.options()$pcralg)}\arguments{  \item{formula}{a model formula.  Most of the \code{lm} formula    constructs are supported.  See below.}  \item{ncomp}{the number of components to include in the model (see below).}  \item{data}{an optional data frame with the data to fit the model from.}  \item{subset}{an optional vector specifying a subset of observations    to be used in the fitting process.}  \item{na.action}{a function which indicates what should happen when    the data contain missing values.}  \item{method}{the multivariate regression method to be used.  If    \code{"model.frame"}, the model frame is returned.}  \item{scale}{numeric vector, or logical.  If numeric vector, \eqn{X}    is scaled by dividing each variable with the corresponding element    of \code{scale}.  If \code{scale} is \code{TRUE}, \eqn{X} is scaled    by dividing each variable by its sample standard deviation.  If    cross-validation is selected, scaling by the standard deviation is    done for every segment.}  \item{validation}{character.  What kind of (internal) validation to    use.  See below.}  \item{model}{a logical.  If \code{TRUE}, the model frame is returned.}  \item{x}{a logical.  If \code{TRUE}, the model matrix is returned.}  \item{y}{a logical.  If \code{TRUE}, the response is returned.}  \item{\dots}{additional arguments, passed to the underlying fit    functions, and \code{mvrCv}.}}\details{  The functions fit PLSR or PCR models with 1, \eqn{\ldots},  \code{ncomp} number of components.  Multi-response models are fully  supported.  The type of model to fit is specified with the \code{method}  argument. Four PLSR algorithms are available: the kernel algorithm  (\code{"kernelpls"}), the wide kernel algorithm (\code{"widekernelpls"}),  SIMPLS (\code{"simpls"}) and the classical  orthogonal scores algorithm (\code{"oscorespls"}).  One PCR algorithm  is available: using the singular value decomposition (\code{"svdpc"}).  If \code{method} is \code{"model.frame"}, the model frame is returned.  The functions \code{pcr} and \code{plsr} are wrappers for \code{mvr},  with different values for \code{method}.  The \code{formula} argument should be a symbolic formula of the form  \code{response ~ terms}, where \code{response} is the name of the  response vector or matrix (for multi-response models) and \code{terms}  is the name of one or more predictor matrices, usually separated by  \code{+}, e.g., \code{water ~ FTIR} or \code{y ~ X + Z}.  See  \code{\link{lm}} for a detailed description.  The named  variables should exist in the supplied \code{data} data frame or in  the global environment.  Note: Do not use \code{mvr(mydata$y ~    mydata$X, \ldots)}, instead use \code{mvr(y ~ X, data = mydata,    \ldots)}.  Otherwise, \code{\link{predict.mvr}} will not work properly.  The chapter \samp{Statistical models in R} of the manual \samp{An    Introduction to R} distributed with \R is a good reference on  formulas in \R.  The number of components to fit is specified with the argument  \code{ncomp}.  It this is not supplied, the maximal number of  components is used (taking account of any cross-validation).  If \code{validation = "CV"}, cross-validation is performed.  The number and  type of cross-validation segments are specified with the arguments  \code{segments} and \code{segment.type}.  See \code{\link{mvrCv}} for  details.  If \code{validation = "LOO"}, leave-one-out cross-validation  is performed.  It is an error to specify the segments when  \code{validation = "LOO"} is specified.  Note that the cross-validation is optimised for speed, and some  generality has been sacrificed.  Especially, the model matrix is  calculated only once for the complete cross-validation, so models like  \code{y ~ msc(X)} will not be properly cross-validated.  However,  scaling requested by \code{scale = TRUE} is properly cross-validated.  For proper cross-validation of models where the model matrix must be  updated/regenerated for each segment, use the separate function  \code{\link{crossval}}.}\value{  If \code{method = "model.frame"}, the model frame is returned.  Otherwise, an object of class \code{mvr} is returned.  The object contains all components returned by the underlying fit  function.  In addition, it contains the following components:  \item{validation}{if validation was requested, the results of the    cross-validation.  See \code{\link{mvrCv}} for details.}  \item{na.action}{if observations with missing values were removed,    \code{na.action} contains a vector with their indices.  The    class of this vector is used by functions like \code{fitted} to    decide how to treat the observations.}  \item{ncomp}{the number of components of the model.}  \item{method}{the method used to fit the model.  See the argument    \code{method} for possible values.}  \item{scale}{if scaling was requested (with \code{scale}), the    scaling used.}  \item{call}{the function call.}  \item{terms}{the model terms.}  \item{model}{if \code{model = TRUE}, the model frame.}  \item{x}{if \code{x = TRUE}, the model matrix.}  \item{y}{if \code{y = TRUE}, the model response.}}\references{  Martens, H., N鎠, T. (1989) \emph{Multivariate calibration.}  Chichester: Wiley.}\author{Ron Wehrens and Bj鴕n-Helge Mevik}\seealso{  \code{\link{kernelpls.fit}},  \code{\link{widekernelpls.fit}},  \code{\link{simpls.fit}},  \code{\link{oscorespls.fit}},  \code{\link{svdpc.fit}},  \code{\link{mvrCv}},  \code{\link{crossval}},  \code{\link[stats]{loadings}},  \code{\link{scores}},  \code{\link{loading.weights}},  \code{\link{coef.mvr}},  \code{\link{predict.mvr}},  \code{\link{R2}},  \code{\link{MSEP}},  \code{\link{RMSEP}},  \code{\link{plot.mvr}}}\examples{data(yarn)## Default methods:yarn.pcr <- pcr(density ~ NIR, 6, data = yarn, validation = "CV")yarn.pls <- plsr(density ~ NIR, 6, data = yarn, validation = "CV")## Alternative methods:yarn.oscorespls <- mvr(density ~ NIR, 6, data = yarn, validation = "CV",                      method = "oscorespls")yarn.simpls <- mvr(density ~ NIR, 6, data = yarn, validation = "CV",                  method = "simpls")data(oliveoil)sens.pcr <- pcr(sensory ~ chemical, ncomp = 4, scale = TRUE, data = oliveoil)sens.pls <- plsr(sensory ~ chemical, ncomp = 4, scale = TRUE, data = oliveoil)}\keyword{regression}\keyword{multivariate}

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧洲色大大久久| 亚洲欧美另类久久久精品| 国产欧美日韩麻豆91| 亚洲成av人片一区二区三区| 国产成人自拍在线| 欧美一区二区三区小说| 亚洲视频精选在线| 国产精品主播直播| 欧美一区二区免费观在线| 亚洲婷婷在线视频| 风间由美一区二区av101| 91麻豆精品国产自产在线观看一区 | 麻豆91在线看| 欧美体内she精视频| 国产精品美女久久久久aⅴ| 久久精品国产精品亚洲红杏| 欧美性色黄大片手机版| 亚洲精品久久久蜜桃| 成人综合在线视频| 国产日韩三级在线| 国产成人在线视频播放| 精品国偷自产国产一区| 精品一区二区三区不卡| 91精品麻豆日日躁夜夜躁| 亚洲国产精品视频| 在线观看91精品国产麻豆| 亚洲综合色视频| 欧美在线视频你懂得| 亚洲精品第1页| 色婷婷综合久久久| 亚瑟在线精品视频| 日韩一区二区精品在线观看| 日韩精品免费专区| 日韩欧美亚洲一区二区| 激情偷乱视频一区二区三区| 欧美成人免费网站| 国产精品一区二区视频| 欧美极品另类videosde| 国产成人免费视频精品含羞草妖精| 久久综合视频网| 成人国产精品免费| 亚洲国产日韩在线一区模特| 欧美日韩国产精品自在自线| 免费在线看成人av| 久久精品欧美一区二区三区不卡 | 国产成人精品一区二区三区网站观看| 精品国产乱子伦一区| 国产真实乱对白精彩久久| 亚洲国产精品t66y| 色哟哟欧美精品| 日本最新不卡在线| 久久亚洲综合av| 日本久久电影网| 日韩影视精彩在线| 国产精品视频看| 欧美视频一区二区三区四区| 美女视频网站久久| 18欧美亚洲精品| 91精品免费在线| 成人在线综合网| 亚洲国产成人va在线观看天堂| 日韩一卡二卡三卡| 成人午夜电影久久影院| 亚洲一区国产视频| 久久欧美中文字幕| 在线精品视频免费观看| 国产乱对白刺激视频不卡| 亚洲欧美激情在线| 国产婷婷一区二区| 欧美性xxxxx极品少妇| 国产一区二区视频在线| 亚洲精品视频一区二区| 精品裸体舞一区二区三区| 色综合天天天天做夜夜夜夜做| 美女一区二区视频| 亚洲精品福利视频网站| 国产性天天综合网| 欧美精品亚洲一区二区在线播放| 国产一区二区三区在线观看免费 | 中文字幕亚洲欧美在线不卡| 欧美肥妇bbw| 91福利视频网站| 顶级嫩模精品视频在线看| 日韩av一区二| 香蕉成人伊视频在线观看| 国产精品卡一卡二| 久久久.com| 日韩欧美专区在线| 欧美日韩亚洲国产综合| 91免费在线看| 成人黄色在线视频| 国产91精品一区二区麻豆网站| 日本不卡一区二区| 亚洲成av人**亚洲成av**| 中文字幕一区二区不卡| 国产精品激情偷乱一区二区∴| 久久影院午夜论| 欧美成人女星排名| 精品国产亚洲一区二区三区在线观看| 欧美色爱综合网| 欧美日韩一区不卡| 色狠狠桃花综合| 日本韩国精品在线| 色婷婷香蕉在线一区二区| 91在线一区二区三区| 成人白浆超碰人人人人| 国产成人精品网址| 国产91在线|亚洲| 国产不卡高清在线观看视频| 国产麻豆精品在线| 国产高清不卡二三区| 国产精品白丝jk黑袜喷水| 国产一区二区三区四区五区入口| 亚洲成人免费av| 视频在线在亚洲| 日韩国产精品久久久| 日韩国产精品91| 久久精品国产99久久6| 九九精品视频在线看| 国产一区二区成人久久免费影院| 狠狠色丁香久久婷婷综合_中| 国产综合色精品一区二区三区| 国产露脸91国语对白| 成人高清av在线| 在线精品国精品国产尤物884a| 欧美日韩视频在线观看一区二区三区 | 粗大黑人巨茎大战欧美成人| 9人人澡人人爽人人精品| 91丨九色丨国产丨porny| 在线观看亚洲精品| 日韩一本二本av| 国产精品日韩精品欧美在线| 国产欧美日韩视频一区二区| 亚洲欧美另类小说| 日韩黄色小视频| 国产成a人亚洲| 欧美性xxxxxx少妇| 精品欧美乱码久久久久久 | 色悠悠久久综合| 5858s免费视频成人| 久久伊人蜜桃av一区二区| 国产精品欧美极品| 日韩av电影天堂| 国产精品中文有码| 99久久久无码国产精品| 欧美日韩一卡二卡三卡| 亚洲精品在线电影| 亚洲欧美日韩电影| 韩国三级电影一区二区| 色综合久久久久综合体| 日韩欧美的一区二区| 国产精品久久一级| 日韩高清不卡在线| 99久久精品国产麻豆演员表| 9191成人精品久久| 国产精品久久久久久久久免费樱桃| 日韩精品电影在线| 91小视频在线免费看| 日韩三级视频在线看| 亚洲人成影院在线观看| 久久国产成人午夜av影院| 91成人免费在线视频| 欧美国产97人人爽人人喊| 日本亚洲一区二区| 一本久久a久久免费精品不卡| 日韩精品最新网址| 亚洲午夜久久久久久久久电影院| 国内外精品视频| 日韩一区二区三区在线观看| 亚洲精品日韩综合观看成人91| 福利一区福利二区| 日韩美女视频在线| 婷婷六月综合网| 日本精品视频一区二区| 国产精品国产精品国产专区不蜜| 久久91精品国产91久久小草| 欧洲色大大久久| 综合久久久久久久| 国产精一品亚洲二区在线视频| 欧美一区二区在线看| 午夜视频在线观看一区二区三区| 色婷婷av一区二区三区大白胸| 国产精品久久网站| 成人一区二区视频| 欧美极品aⅴ影院| 成人h动漫精品一区二区| 国产欧美一区二区三区网站| 国产在线视频一区二区| 精品电影一区二区三区| 蜜臀av亚洲一区中文字幕| 6080yy午夜一二三区久久| 五月天中文字幕一区二区| 欧美精品久久久久久久多人混战| 一区av在线播放| 91成人免费在线| 亚洲1区2区3区4区| 日韩一区二区三区av| 裸体一区二区三区| 欧美mv和日韩mv的网站| 久草这里只有精品视频|