亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專(zhuān)輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? readme.hmm

?? Hidden_Markov_model_for_automatic_speech_recognition This code implements in C++ a basic left-right
?? HMM
字號(hào):
		H I D D E N   M A R K O V   M O D E L		 for automatic speech recognition7/30/95  This code implements in C++ a basic left-right hidden Markov modeland corresponding Baum-Welch (ML) training algorithm.  It is meant asan example of the HMM algorithms described by L.Rabiner (1) andothers.  Serious students are directed to the sources listed below fora theoretical description of the algorithm.  KF Lee (2) offers anespecially good tutorial of how to build a speech recognition systemusing hidden Markov models.    Jim and I built this code in order to learn how HMM systems work andwe are now offering it to the net so that others can learn how to useHMMs for speech recognition.  Keep in mind that efficiency was not ourprimary concern when we built this code, but ease of understandingwas.  I expect people to use this code in two different ways.  Peoplewho wish to build an experimental speech recognition system can usethe included "train_hmm" and "test_hmm" programs as black boxcomponents.  The code can also be used in conjunction with writtentutorials on HMMs to understand how they work.			HOW TO COMPILE IT:  We built this code on a Linux system (8meg RAM) and it has beentested under SunOS as well; it should run on any system with Gnu C++and has been tested to be ANSI compliant.  To compile and test the program,	1) extract the code: 		tar -xf hmm.tar	2) compile the programs:		 make all	3) create test sequences: 		generate_seq test.hmm 20 50	4) train using existing model: 		train_hmm test.hmm.seq test.hmm .01	5) train using random parameters: 		train_hmm test.hmm.seq 1234 3 3 .01  After steps 4 and 5 you can compare the file test.hmm.seq.hmm withtest.hmm to confirm that the program is working.				FILE FORMATS:  There are two types of files used by these programs.  The first isthe hmm model file which has the following header:	states: <number of states>	symbols: <number of symbols> A series of ordered blocks follow the header, each of which is twolines long.  Each block corresponds to a state in the model.  Thefirst line of each block gives the probability of the model recurringfollowed by the probability of generating each of the possible outputsymbols when it recurs.  The second line gives the probability of themodel transitioning to the next state followed by the probability ofgenerating each of the possible output symbols when it transitions.The file "test.hmm" gives an example of this format for a three statemodel with three possible output symbols.  The second kind of file is a list of symbol sequences to train ortest the model on.  Symbol sequences are space separated integers (0 12...) terminated by a newline ("\n").  Sequences may either be all ofthe same length, or of different lengths.  The algorithm detects foreach case and processes each slightly differently.  Use the output ofstep 3 above for an example of a sequence file.  A file containingsequences which are all of the same length should train slightlyfaster.			ASR IN A NUTSHELL:  A complete automatic speech recognition system is likely to includeprograms that perform the following tasks:	1) convert audio/wave files to sequences of multi-dimensional	   feature vectors. (eg. DFT, PLP, etc)	2) quantize feature vectors into sequences of symbols (eg. VQ)	3) train a model for each recognition object (ie. word,	   phoneme) from the sequences of symbols. (eg. HMM)	4?) constrain models using grammar information.  Most of the above components are readily available as freeware andbuilding a system from them should not be too difficult.  Making itwork well, however, could be a major undertaking; the devil is in thedetails.				FUTURE:  I would like to eventually put together all of the necessarycomponents for a complete speech recognition test bench.  I envisionsomething that could be combined with a standard speech database suchas the TIMIT data set.  Such a test bench would allow researchers toswap in and evaluate their own methods at various stages in thesystem.  Reported results could be compared against the performance ofa standard non-optimized system which would be publicly available.This way two methods could be compared while controlling for differentdata sets and pre/post processing.  Unfortunately, speech recognition is mostly a side line to Jim'sgraduate work in neural networks and I currently have a job that hastaken me away from the field of speech recognition.  If someone usesthis code in a complete system, we would appreciate hearing about it.   Questions and comments can be directed to:   Richard Myers  (rmyers@isx.com) and Jim Whitson (whitson@ics.uci.edu)Bibliography:-------------1. L. R. Rabiner, B. H. Juang, "Fundamentals of Speech Recognition."   New Jersey : Prentice Hall, c1993.2. L. R. Rabiner, "A Tutorial on Hidden Markov Models and Selected   Applications in Speech Recognition," Proc. of the IEEE,   Feb. 1989.3. L. R. Rabiner, B. H. Juang, "An Introduction to Hidden Markov   Models," IEEE ASSP Magazine, Jan. 1986.4. K. F. Lee, "Automatic speech recognition : the development of the   SPHINX system." Boston : Kluwer Academic Publishers, c1989.

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲高清一区二区三区| 国产精品天干天干在线综合| 一区二区久久久| 色丁香久综合在线久综合在线观看| 欧美精彩视频一区二区三区| 国产精品亚洲午夜一区二区三区| 久久蜜桃av一区二区天堂 | 综合激情成人伊人| 91色porny在线视频| 亚洲主播在线播放| 欧美人与性动xxxx| 国产一区二区视频在线| 国产欧美日韩在线视频| 一本大道久久a久久精品综合| 亚洲柠檬福利资源导航| 欧美精品99久久久**| 精品亚洲aⅴ乱码一区二区三区| 国产欧美日韩在线看| 色综合久久久久久久久| 日本伊人精品一区二区三区观看方式| 精品国产青草久久久久福利| 不卡在线视频中文字幕| 亚洲国产成人精品视频| www成人在线观看| 色婷婷激情综合| 国产资源精品在线观看| 日韩码欧中文字| 欧美成人猛片aaaaaaa| av网站一区二区三区| 日本伊人午夜精品| 成人免费小视频| 日韩欧美中文一区二区| 99久久er热在这里只有精品15| 午夜久久久久久电影| 国产欧美视频一区二区三区| 欧美日韩在线不卡| 成人黄色777网| 蜜桃视频在线一区| 亚洲欧美国产高清| 久久久www免费人成精品| 欧美性生活久久| 国产不卡在线播放| 日本成人在线网站| 一区二区欧美视频| 欧美—级在线免费片| 日韩一区二区三区四区| 一本大道综合伊人精品热热| 韩国精品免费视频| 热久久免费视频| 亚洲最新在线观看| 中文字幕一区二区三区乱码在线| 日韩视频一区二区| 99国产精品久久久久| 国产一区二区三区四| 日韩1区2区日韩1区2区| 亚洲综合一二区| 成人免费视频在线观看| 欧美激情综合在线| 久久―日本道色综合久久| 91精品国产91综合久久蜜臀| 日本二三区不卡| 97久久久精品综合88久久| 国产一区二区三区精品欧美日韩一区二区三区| 亚洲成在人线免费| 亚洲永久免费视频| 一区二区三区波多野结衣在线观看| 国产精品精品国产色婷婷| 国产亚洲欧美中文| 久久这里只有精品视频网| 日韩一区二区三区精品视频 | 国产成人在线电影| 久久不见久久见免费视频7| 日本怡春院一区二区| 日韩中文字幕区一区有砖一区| 亚洲一区影音先锋| 亚洲国产精品一区二区www| 亚洲一区二区三区中文字幕| 一区二区在线观看不卡| 亚洲影视在线播放| 香蕉成人伊视频在线观看| 五月天中文字幕一区二区| 亚洲成a人v欧美综合天堂下载 | 国产乱码精品一区二区三区忘忧草| 日本亚洲三级在线| 麻豆精品国产传媒mv男同| 奇米精品一区二区三区四区| 男人操女人的视频在线观看欧美| 日本成人中文字幕| 色婷婷国产精品综合在线观看| av电影在线观看不卡| 91同城在线观看| 在线观看不卡视频| 91麻豆精品91久久久久同性| 日韩视频123| 欧美激情一区二区三区蜜桃视频| 国产精品国模大尺度视频| 一区二区三区在线观看国产| 午夜一区二区三区视频| 久久精品999| 成人18精品视频| 欧美三级电影网| 久久噜噜亚洲综合| 亚洲蜜臀av乱码久久精品| 婷婷久久综合九色综合伊人色| 捆绑调教美女网站视频一区| 国产精品小仙女| 在线亚洲人成电影网站色www| 欧美三级三级三级爽爽爽| 精品久久一区二区三区| 国产精品久久久久久久久搜平片 | 日本道免费精品一区二区三区| 欧美日韩国产区一| 久久精品免视看| 亚洲主播在线播放| 国产美女在线观看一区| 91亚洲永久精品| 91麻豆精品国产综合久久久久久| 久久久久久亚洲综合| 亚洲最快最全在线视频| 激情六月婷婷综合| 欧美系列亚洲系列| 久久精品男人天堂av| 亚洲h在线观看| 国产99精品在线观看| 欧美伦理电影网| 国产精品剧情在线亚洲| 男女男精品视频网| 色老综合老女人久久久| 精品对白一区国产伦| 亚洲午夜av在线| 不卡电影免费在线播放一区| 欧美一区二区三区四区久久| 日韩美女视频19| 国产一区二区精品久久91| 在线观看免费一区| 国产精品久久久久一区二区三区共| 日本中文字幕一区| 欧美影院一区二区| 中文字幕制服丝袜一区二区三区| 欧美bbbbb| 欧美日韩aaaaaa| 亚洲激情图片一区| 成人黄色在线视频| 久久久久久久久久久电影| 日本在线不卡一区| 欧美日韩久久久久久| 最新国产の精品合集bt伙计| 国产激情视频一区二区三区欧美 | 色8久久精品久久久久久蜜| 亚洲精品在线观| 热久久免费视频| 欧美日韩国产三级| 亚洲国产精品欧美一二99| 99国产一区二区三精品乱码| 国产欧美精品日韩区二区麻豆天美| 男男成人高潮片免费网站| 欧美日韩免费观看一区三区| 一区二区三区色| 94-欧美-setu| 亚洲精品免费一二三区| heyzo一本久久综合| 国产精品欧美一级免费| 丁香六月综合激情| 国产亚洲欧美激情| 国产91精品免费| 国产日本欧美一区二区| 国产成人自拍在线| 久久久777精品电影网影网 | 风流少妇一区二区| 国产亚洲综合在线| 国产a级毛片一区| 欧美国产精品一区| av成人老司机| 亚洲欧美日韩国产中文在线| 一本到一区二区三区| 伊人婷婷欧美激情| 国产精品久久久久四虎| 99在线视频精品| 亚洲人成小说网站色在线| 色婷婷av一区二区三区大白胸| 亚洲卡通动漫在线| 欧美老女人在线| 久久www免费人成看片高清| 精品理论电影在线观看| 国产精品一区二区果冻传媒| 国产欧美一区二区在线观看| 成人黄色在线网站| 亚洲美女偷拍久久| 欧美日韩免费在线视频| 欧美aa在线视频| 国产午夜亚洲精品不卡| 99视频在线精品| 亚洲.国产.中文慕字在线| 日韩一区二区不卡| 丰满少妇在线播放bd日韩电影| 亚洲欧美综合色| 91精品国产乱码久久蜜臀| 国产精品99久久久久久有的能看| 国产精品国产三级国产专播品爱网| 91黄色激情网站|