亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? predicates.cxx

?? 一個很有效的構(gòu)建delauny的英文程序說明
?? CXX
?? 第 1 頁 / 共 5 頁
字號:
/*****************************************************************************//*                                                                           *//*  Routines for Arbitrary Precision Floating-point Arithmetic               *//*  and Fast Robust Geometric Predicates                                     *//*  (predicates.c)                                                           *//*                                                                           *//*  May 18, 1996                                                             *//*                                                                           *//*  Placed in the public domain by                                           *//*  Jonathan Richard Shewchuk                                                *//*  School of Computer Science                                               *//*  Carnegie Mellon University                                               *//*  5000 Forbes Avenue                                                       *//*  Pittsburgh, Pennsylvania  15213-3891                                     *//*  jrs@cs.cmu.edu                                                           *//*                                                                           *//*  This file contains C implementation of algorithms for exact addition     *//*    and multiplication of floating-point numbers, and predicates for       *//*    robustly performing the orientation and incircle tests used in         *//*    computational geometry.  The algorithms and underlying theory are      *//*    described in Jonathan Richard Shewchuk.  "Adaptive Precision Floating- *//*    Point Arithmetic and Fast Robust Geometric Predicates."  Technical     *//*    Report CMU-CS-96-140, School of Computer Science, Carnegie Mellon      *//*    University, Pittsburgh, Pennsylvania, May 1996.  (Submitted to         *//*    Discrete & Computational Geometry.)                                    *//*                                                                           *//*  This file, the paper listed above, and other information are available   *//*    from the Web page http://www.cs.cmu.edu/~quake/robust.html .           *//*                                                                           *//*****************************************************************************//*****************************************************************************//*                                                                           *//*  Using this code:                                                         *//*                                                                           *//*  First, read the short or long version of the paper (from the Web page    *//*    above).                                                                *//*                                                                           *//*  Be sure to call exactinit() once, before calling any of the arithmetic   *//*    functions or geometric predicates.  Also be sure to turn on the        *//*    optimizer when compiling this file.                                    *//*                                                                           *//*                                                                           *//*  Several geometric predicates are defined.  Their parameters are all      *//*    points.  Each point is an array of two or three floating-point         *//*    numbers.  The geometric predicates, described in the papers, are       *//*                                                                           *//*    orient2d(pa, pb, pc)                                                   *//*    orient2dfast(pa, pb, pc)                                               *//*    orient3d(pa, pb, pc, pd)                                               *//*    orient3dfast(pa, pb, pc, pd)                                           *//*    incircle(pa, pb, pc, pd)                                               *//*    incirclefast(pa, pb, pc, pd)                                           *//*    insphere(pa, pb, pc, pd, pe)                                           *//*    inspherefast(pa, pb, pc, pd, pe)                                       *//*                                                                           *//*  Those with suffix "fast" are approximate, non-robust versions.  Those    *//*    without the suffix are adaptive precision, robust versions.  There     *//*    are also versions with the suffices "exact" and "slow", which are      *//*    non-adaptive, exact arithmetic versions, which I use only for timings  *//*    in my arithmetic papers.                                               *//*                                                                           *//*                                                                           *//*  An expansion is represented by an array of floating-point numbers,       *//*    sorted from smallest to largest magnitude (possibly with interspersed  *//*    zeros).  The length of each expansion is stored as a separate integer, *//*    and each arithmetic function returns an integer which is the length    *//*    of the expansion it created.                                           *//*                                                                           *//*  Several arithmetic functions are defined.  Their parameters are          *//*                                                                           *//*    e, f           Input expansions                                        *//*    elen, flen     Lengths of input expansions (must be >= 1)              *//*    h              Output expansion                                        *//*    b              Input scalar                                            *//*                                                                           *//*  The arithmetic functions are                                             *//*                                                                           *//*    grow_expansion(elen, e, b, h)                                          *//*    grow_expansion_zeroelim(elen, e, b, h)                                 *//*    expansion_sum(elen, e, flen, f, h)                                     *//*    expansion_sum_zeroelim1(elen, e, flen, f, h)                           *//*    expansion_sum_zeroelim2(elen, e, flen, f, h)                           *//*    fast_expansion_sum(elen, e, flen, f, h)                                *//*    fast_expansion_sum_zeroelim(elen, e, flen, f, h)                       *//*    linear_expansion_sum(elen, e, flen, f, h)                              *//*    linear_expansion_sum_zeroelim(elen, e, flen, f, h)                     *//*    scale_expansion(elen, e, b, h)                                         *//*    scale_expansion_zeroelim(elen, e, b, h)                                *//*    compress(elen, e, h)                                                   *//*                                                                           *//*  All of these are described in the long version of the paper; some are    *//*    described in the short version.  All return an integer that is the     *//*    length of h.  Those with suffix _zeroelim perform zero elimination,    *//*    and are recommended over their counterparts.  The procedure            *//*    fast_expansion_sum_zeroelim() (or linear_expansion_sum_zeroelim() on   *//*    processors that do not use the round-to-even tiebreaking rule) is      *//*    recommended over expansion_sum_zeroelim().  Each procedure has a       *//*    little note next to it (in the code below) that tells you whether or   *//*    not the output expansion may be the same array as one of the input     *//*    expansions.                                                            *//*                                                                           *//*                                                                           *//*  If you look around below, you'll also find macros for a bunch of         *//*    simple unrolled arithmetic operations, and procedures for printing     *//*    expansions (commented out because they don't work with all C           *//*    compilers) and for generating random floating-point numbers whose      *//*    significand bits are all random.  Most of the macros have undocumented *//*    requirements that certain of their parameters should not be the same   *//*    variable; for safety, better to make sure all the parameters are       *//*    distinct variables.  Feel free to send email to jrs@cs.cmu.edu if you  *//*    have questions.                                                        *//*                                                                           *//*****************************************************************************/#include <stdio.h>#include <stdlib.h>#include <math.h>#ifdef CPU86#include <float.h>#endif /* CPU86 */#ifdef LINUX#include <fpu_control.h>#endif /* LINUX */#include "tetgen.h"            // Defines the symbol REAL (float or double)./* On some machines, the exact arithmetic routines might be defeated by the  *//*   use of internal extended precision floating-point registers.  Sometimes *//*   this problem can be fixed by defining certain values to be volatile,    *//*   thus forcing them to be stored to memory and rounded off.  This isn't   *//*   a great solution, though, as it slows the arithmetic down.              *//*                                                                           *//* To try this out, write "#define INEXACT volatile" below.  Normally,       *//*   however, INEXACT should be defined to be nothing.  ("#define INEXACT".) */#define INEXACT                          /* Nothing *//* #define INEXACT volatile *//* #define REAL double */                      /* float or double */#define REALPRINT doubleprint#define REALRAND doublerand#define NARROWRAND narrowdoublerand#define UNIFORMRAND uniformdoublerand/* Which of the following two methods of finding the absolute values is      *//*   fastest is compiler-dependent.  A few compilers can inline and optimize *//*   the fabs() call; but most will incur the overhead of a function call,   *//*   which is disastrously slow.  A faster way on IEEE machines might be to  *//*   mask the appropriate bit, but that's difficult to do in C.              */#define Absolute(a)  ((a) >= 0.0 ? (a) : -(a))/* #define Absolute(a)  fabs(a) *//* Many of the operations are broken up into two pieces, a main part that    *//*   performs an approximate operation, and a "tail" that computes the       *//*   roundoff error of that operation.                                       *//*                                                                           *//* The operations Fast_Two_Sum(), Fast_Two_Diff(), Two_Sum(), Two_Diff(),    *//*   Split(), and Two_Product() are all implemented as described in the      *//*   reference.  Each of these macros requires certain variables to be       *//*   defined in the calling routine.  The variables `bvirt', `c', `abig',    *//*   `_i', `_j', `_k', `_l', `_m', and `_n' are declared `INEXACT' because   *//*   they store the result of an operation that may incur roundoff error.    *//*   The input parameter `x' (or the highest numbered `x_' parameter) must   *//*   also be declared `INEXACT'.                                             */#define Fast_Two_Sum_Tail(a, b, x, y) \  bvirt = x - a; \  y = b - bvirt#define Fast_Two_Sum(a, b, x, y) \  x = (REAL) (a + b); \  Fast_Two_Sum_Tail(a, b, x, y)#define Fast_Two_Diff_Tail(a, b, x, y) \  bvirt = a - x; \  y = bvirt - b#define Fast_Two_Diff(a, b, x, y) \  x = (REAL) (a - b); \  Fast_Two_Diff_Tail(a, b, x, y)#define Two_Sum_Tail(a, b, x, y) \  bvirt = (REAL) (x - a); \  avirt = x - bvirt; \  bround = b - bvirt; \  around = a - avirt; \  y = around + bround#define Two_Sum(a, b, x, y) \  x = (REAL) (a + b); \  Two_Sum_Tail(a, b, x, y)#define Two_Diff_Tail(a, b, x, y) \  bvirt = (REAL) (a - x); \  avirt = x + bvirt; \  bround = bvirt - b; \  around = a - avirt; \  y = around + bround#define Two_Diff(a, b, x, y) \  x = (REAL) (a - b); \  Two_Diff_Tail(a, b, x, y)#define Split(a, ahi, alo) \  c = (REAL) (splitter * a); \  abig = (REAL) (c - a); \  ahi = c - abig; \  alo = a - ahi#define Two_Product_Tail(a, b, x, y) \  Split(a, ahi, alo); \  Split(b, bhi, blo); \  err1 = x - (ahi * bhi); \  err2 = err1 - (alo * bhi); \  err3 = err2 - (ahi * blo); \  y = (alo * blo) - err3#define Two_Product(a, b, x, y) \  x = (REAL) (a * b); \  Two_Product_Tail(a, b, x, y)/* Two_Product_Presplit() is Two_Product() where one of the inputs has       *//*   already been split.  Avoids redundant splitting.                        */#define Two_Product_Presplit(a, b, bhi, blo, x, y) \  x = (REAL) (a * b); \  Split(a, ahi, alo); \  err1 = x - (ahi * bhi); \  err2 = err1 - (alo * bhi); \  err3 = err2 - (ahi * blo); \  y = (alo * blo) - err3/* Two_Product_2Presplit() is Two_Product() where both of the inputs have    *//*   already been split.  Avoids redundant splitting.                        */#define Two_Product_2Presplit(a, ahi, alo, b, bhi, blo, x, y) \  x = (REAL) (a * b); \  err1 = x - (ahi * bhi); \  err2 = err1 - (alo * bhi); \  err3 = err2 - (ahi * blo); \  y = (alo * blo) - err3/* Square() can be done more quickly than Two_Product().                     */#define Square_Tail(a, x, y) \  Split(a, ahi, alo); \  err1 = x - (ahi * ahi); \  err3 = err1 - ((ahi + ahi) * alo); \  y = (alo * alo) - err3#define Square(a, x, y) \  x = (REAL) (a * a); \  Square_Tail(a, x, y)/* Macros for summing expansions of various fixed lengths.  These are all    *//*   unrolled versions of Expansion_Sum().                                   */#define Two_One_Sum(a1, a0, b, x2, x1, x0) \  Two_Sum(a0, b , _i, x0); \  Two_Sum(a1, _i, x2, x1)#define Two_One_Diff(a1, a0, b, x2, x1, x0) \  Two_Diff(a0, b , _i, x0); \  Two_Sum( a1, _i, x2, x1)#define Two_Two_Sum(a1, a0, b1, b0, x3, x2, x1, x0) \  Two_One_Sum(a1, a0, b0, _j, _0, x0); \  Two_One_Sum(_j, _0, b1, x3, x2, x1)#define Two_Two_Diff(a1, a0, b1, b0, x3, x2, x1, x0) \  Two_One_Diff(a1, a0, b0, _j, _0, x0); \  Two_One_Diff(_j, _0, b1, x3, x2, x1)#define Four_One_Sum(a3, a2, a1, a0, b, x4, x3, x2, x1, x0) \  Two_One_Sum(a1, a0, b , _j, x1, x0); \  Two_One_Sum(a3, a2, _j, x4, x3, x2)#define Four_Two_Sum(a3, a2, a1, a0, b1, b0, x5, x4, x3, x2, x1, x0) \  Four_One_Sum(a3, a2, a1, a0, b0, _k, _2, _1, _0, x0); \  Four_One_Sum(_k, _2, _1, _0, b1, x5, x4, x3, x2, x1)#define Four_Four_Sum(a3, a2, a1, a0, b4, b3, b1, b0, x7, x6, x5, x4, x3, x2, \                      x1, x0) \  Four_Two_Sum(a3, a2, a1, a0, b1, b0, _l, _2, _1, _0, x1, x0); \  Four_Two_Sum(_l, _2, _1, _0, b4, b3, x7, x6, x5, x4, x3, x2)#define Eight_One_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b, x8, x7, x6, x5, x4, \                      x3, x2, x1, x0) \  Four_One_Sum(a3, a2, a1, a0, b , _j, x3, x2, x1, x0); \  Four_One_Sum(a7, a6, a5, a4, _j, x8, x7, x6, x5, x4)#define Eight_Two_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b1, b0, x9, x8, x7, \                      x6, x5, x4, x3, x2, x1, x0) \  Eight_One_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b0, _k, _6, _5, _4, _3, _2, \                _1, _0, x0); \  Eight_One_Sum(_k, _6, _5, _4, _3, _2, _1, _0, b1, x9, x8, x7, x6, x5, x4, \                x3, x2, x1)#define Eight_Four_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b4, b3, b1, b0, x11, \                       x10, x9, x8, x7, x6, x5, x4, x3, x2, x1, x0) \  Eight_Two_Sum(a7, a6, a5, a4, a3, a2, a1, a0, b1, b0, _l, _6, _5, _4, _3, \                _2, _1, _0, x1, x0); \  Eight_Two_Sum(_l, _6, _5, _4, _3, _2, _1, _0, b4, b3, x11, x10, x9, x8, \                x7, x6, x5, x4, x3, x2)/* Macros for multiplying expansions of various fixed lengths.               */#define Two_One_Product(a1, a0, b, x3, x2, x1, x0) \  Split(b, bhi, blo); \  Two_Product_Presplit(a0, b, bhi, blo, _i, x0); \  Two_Product_Presplit(a1, b, bhi, blo, _j, _0); \  Two_Sum(_i, _0, _k, x1); \  Fast_Two_Sum(_j, _k, x3, x2)#define Four_One_Product(a3, a2, a1, a0, b, x7, x6, x5, x4, x3, x2, x1, x0) \  Split(b, bhi, blo); \  Two_Product_Presplit(a0, b, bhi, blo, _i, x0); \  Two_Product_Presplit(a1, b, bhi, blo, _j, _0); \  Two_Sum(_i, _0, _k, x1); \  Fast_Two_Sum(_j, _k, _i, x2); \  Two_Product_Presplit(a2, b, bhi, blo, _j, _0); \  Two_Sum(_i, _0, _k, x3); \  Fast_Two_Sum(_j, _k, _i, x4); \  Two_Product_Presplit(a3, b, bhi, blo, _j, _0); \  Two_Sum(_i, _0, _k, x5); \  Fast_Two_Sum(_j, _k, x7, x6)#define Two_Two_Product(a1, a0, b1, b0, x7, x6, x5, x4, x3, x2, x1, x0) \  Split(a0, a0hi, a0lo); \  Split(b0, bhi, blo); \  Two_Product_2Presplit(a0, a0hi, a0lo, b0, bhi, blo, _i, x0); \  Split(a1, a1hi, a1lo); \  Two_Product_2Presplit(a1, a1hi, a1lo, b0, bhi, blo, _j, _0); \  Two_Sum(_i, _0, _k, _1); \  Fast_Two_Sum(_j, _k, _l, _2); \  Split(b1, bhi, blo); \  Two_Product_2Presplit(a0, a0hi, a0lo, b1, bhi, blo, _i, _0); \  Two_Sum(_1, _0, _k, x1); \  Two_Sum(_2, _k, _j, _1); \  Two_Sum(_l, _j, _m, _2); \  Two_Product_2Presplit(a1, a1hi, a1lo, b1, bhi, blo, _j, _0); \  Two_Sum(_i, _0, _n, _0); \  Two_Sum(_1, _0, _i, x2); \  Two_Sum(_2, _i, _k, _1); \  Two_Sum(_m, _k, _l, _2); \  Two_Sum(_j, _n, _k, _0); \  Two_Sum(_1, _0, _j, x3); \  Two_Sum(_2, _j, _i, _1); \

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
99re免费视频精品全部| 国产无一区二区| 综合久久国产九一剧情麻豆| 日韩av一区二区三区四区| 91天堂素人约啪| 1024成人网| 99久久er热在这里只有精品15 | 亚洲老司机在线| 95精品视频在线| 亚洲人成网站色在线观看| 99久久综合精品| 亚洲一线二线三线久久久| 91久久人澡人人添人人爽欧美| 日韩久久一区二区| 在线一区二区三区| 午夜伊人狠狠久久| 555夜色666亚洲国产免| 精品一区二区影视| 久久久久久久久伊人| 96av麻豆蜜桃一区二区| 天天综合网天天综合色| 久久久久9999亚洲精品| 91亚洲精品乱码久久久久久蜜桃| 亚洲免费观看高清在线观看| 欧美日韩一区中文字幕| 国产精品99久久久久久宅男| 亚洲人xxxx| 久久综合精品国产一区二区三区| 成人午夜视频在线观看| 亚洲亚洲精品在线观看| 久久只精品国产| 91麻豆精品视频| 国产成人免费视频网站| 亚洲国产一区二区三区| 国产精品久久午夜夜伦鲁鲁| 欧美日韩三级视频| 99re热视频精品| 国产精品一区二区免费不卡| 婷婷久久综合九色国产成人 | 在线观看视频91| 国产凹凸在线观看一区二区| 免费精品视频在线| 日韩在线观看一区二区| 亚洲一区国产视频| 亚洲日本在线天堂| 亚洲欧洲成人自拍| 亚洲天堂久久久久久久| 欧美激情一区在线观看| 国产亚洲自拍一区| 国产亚洲综合性久久久影院| 精品国精品自拍自在线| 欧美变态tickling挠脚心| 欧美精品久久久久久久多人混战 | 精品久久久久久久一区二区蜜臀| 欧美日韩视频不卡| 91精品在线麻豆| 91精品国产综合久久久蜜臀粉嫩 | 日韩三级在线观看| 成人免费视频caoporn| 一区二区三区在线观看视频 | 亚洲欧美视频在线观看| 国产欧美视频在线观看| 国产亚洲福利社区一区| 国产免费久久精品| 国产精品美女久久久久aⅴ | www.爱久久.com| 91视频一区二区| 国产乱码精品一区二区三区五月婷| 亚洲自拍偷拍网站| 日韩精品乱码免费| 国产成人综合网| 日本电影欧美片| 欧美不卡一区二区| 亚洲天堂a在线| 免费观看成人av| 91在线云播放| 91精品国产一区二区| 国产日韩欧美精品一区| 亚洲与欧洲av电影| 国产精品自拍在线| 欧美日韩欧美一区二区| 亚洲国产激情av| 日本va欧美va精品| 日本韩国欧美一区二区三区| 欧美一卡2卡三卡4卡5免费| 亚洲国产精品成人综合| 肉色丝袜一区二区| 91福利在线播放| 国产精品色哟哟| 久久av资源站| 欧美日韩国产片| 亚洲一区欧美一区| 色综合色综合色综合| 国产欧美精品一区二区色综合朱莉 | 欧美亚州韩日在线看免费版国语版| 精品国产成人系列| 日韩精品91亚洲二区在线观看| 91老师国产黑色丝袜在线| 国产欧美精品一区二区色综合 | 激情深爱一区二区| 日韩欧美综合在线| 日韩影视精彩在线| 欧美猛男gaygay网站| 性欧美大战久久久久久久久| 91欧美一区二区| 亚洲美女屁股眼交| 欧美日韩一区二区欧美激情 | 樱花草国产18久久久久| 一本久道久久综合中文字幕| 国产精品久久毛片| 欧洲亚洲国产日韩| 日日噜噜夜夜狠狠视频欧美人| 在线观看91精品国产麻豆| 美女一区二区在线观看| 精品乱码亚洲一区二区不卡| 国产精品一区二区三区乱码| 国产日韩高清在线| 欧美日韩久久久一区| 蜜臀久久99精品久久久画质超高清| 久久亚洲一区二区三区四区| thepron国产精品| 亚洲3atv精品一区二区三区| 91精品国产综合久久福利| 国产一区 二区 三区一级| 亚洲精品视频在线看| 欧美一区二区三区影视| 国产成人免费在线观看不卡| 亚洲欧美aⅴ...| 国产日韩欧美综合在线| 欧美日韩精品二区第二页| 大胆欧美人体老妇| 日本大胆欧美人术艺术动态| 国产精品久久一级| 欧美一区二区三区播放老司机| av在线综合网| 粉嫩久久99精品久久久久久夜| 日日夜夜一区二区| 亚洲成人午夜影院| 综合网在线视频| 国产欧美一区二区三区网站| 欧美一级午夜免费电影| 欧美三级日韩三级国产三级| 国产精品资源网| 韩国精品主播一区二区在线观看 | 中文字幕一区二区在线播放| 久久新电视剧免费观看| 精品少妇一区二区三区日产乱码 | 亚洲精品伦理在线| 国产精品视频一二| 国产网站一区二区三区| 精品对白一区国产伦| 久久婷婷久久一区二区三区| 欧美不卡激情三级在线观看| 日韩一区二区视频| 欧美mv和日韩mv的网站| 国产三级精品视频| 日韩毛片高清在线播放| 亚洲一区在线观看免费 | 不卡在线观看av| jizzjizzjizz欧美| 欧美午夜片在线看| 日韩欧美中文一区| 久久久www成人免费毛片麻豆| 欧美国产丝袜视频| 一区二区三区在线观看网站| 首页国产丝袜综合| 国产伦精品一区二区三区免费迷| 国产.精品.日韩.另类.中文.在线.播放| 国产一区二区精品久久99| 成+人+亚洲+综合天堂| 一本大道久久a久久精品综合| 欧美三级日韩在线| 亚洲国产精品成人久久综合一区| 一区二区三区在线观看网站| 久久av中文字幕片| 在线看一区二区| 久久久一区二区| 日本aⅴ免费视频一区二区三区| 成人av在线网站| 精品国产伦一区二区三区免费| 国产精品不卡在线| 激情久久久久久久久久久久久久久久| 99免费精品视频| 久久久久久麻豆| 日本欧美在线看| 欧美日本不卡视频| ㊣最新国产の精品bt伙计久久| 美女一区二区三区| 欧美喷潮久久久xxxxx| 椎名由奈av一区二区三区| 国产不卡在线播放| 久久日韩精品一区二区五区| 午夜精品一区二区三区免费视频 | 久久久综合视频| 欧美国产精品一区| 综合久久久久久久| 韩国成人福利片在线播放| 91免费看`日韩一区二区| 欧美精品123区| 一区二区三区四区高清精品免费观看|