?? multilayerperceptron.java
字號:
}
/**
* A function used to stop the code that called buildclassifier
* from continuing on before the user has finished the decision tree.
* @param tf True to stop the thread, False to release the thread that is
* waiting there (if one).
*/
public synchronized void blocker(boolean tf) {
if (tf) {
try {
wait();
} catch(InterruptedException e) {
}
}
else {
notifyAll();
}
}
/**
* Call this function to update the control panel for the gui.
*/
private void updateDisplay() {
if (m_gui) {
m_controlPanel.m_errorLabel.repaint();
m_controlPanel.m_epochsLabel.repaint();
}
}
/**
* this will reset all the nodes in the network.
*/
private void resetNetwork() {
for (int noc = 0; noc < m_numClasses; noc++) {
m_outputs[noc].reset();
}
}
/**
* This will cause the output values of all the nodes to be calculated.
* Note that the m_currentInstance is used to calculate these values.
*/
private void calculateOutputs() {
for (int noc = 0; noc < m_numClasses; noc++) {
//get the values.
m_outputs[noc].outputValue(true);
}
}
/**
* This will cause the error values to be calculated for all nodes.
* Note that the m_currentInstance is used to calculate these values.
* Also the output values should have been calculated first.
* @return The squared error.
*/
private double calculateErrors() throws Exception {
double ret = 0, temp = 0;
for (int noc = 0; noc < m_numAttributes; noc++) {
//get the errors.
m_inputs[noc].errorValue(true);
}
for (int noc = 0; noc < m_numClasses; noc++) {
temp = m_outputs[noc].errorValue(false);
ret += temp * temp;
}
return ret;
}
/**
* This will cause the weight values to be updated based on the learning
* rate, momentum and the errors that have been calculated for each node.
* @param l The learning rate to update with.
* @param m The momentum to update with.
*/
private void updateNetworkWeights(double l, double m) {
for (int noc = 0; noc < m_numClasses; noc++) {
//update weights
m_outputs[noc].updateWeights(l, m);
}
}
/**
* This creates the required input units.
*/
private void setupInputs() throws Exception {
m_inputs = new NeuralEnd[m_numAttributes];
int now = 0;
for (int noa = 0; noa < m_numAttributes+1; noa++) {
if (m_instances.classIndex() != noa) {
m_inputs[noa - now] = new NeuralEnd(m_instances.attribute(noa).name());
m_inputs[noa - now].setX(.1);
m_inputs[noa - now].setY((noa - now + 1.0) / (m_numAttributes + 1));
m_inputs[noa - now].setLink(true, noa);
}
else {
now = 1;
}
}
}
/**
* This creates the required output units.
*/
private void setupOutputs() throws Exception {
m_outputs = new NeuralEnd[m_numClasses];
for (int noa = 0; noa < m_numClasses; noa++) {
if (m_numeric) {
m_outputs[noa] = new NeuralEnd(m_instances.classAttribute().name());
}
else {
m_outputs[noa]= new NeuralEnd(m_instances.classAttribute().value(noa));
}
m_outputs[noa].setX(.9);
m_outputs[noa].setY((noa + 1.0) / (m_numClasses + 1));
m_outputs[noa].setLink(false, noa);
NeuralNode temp = new NeuralNode(String.valueOf(m_nextId), m_random,
m_sigmoidUnit);
m_nextId++;
temp.setX(.75);
temp.setY((noa + 1.0) / (m_numClasses + 1));
addNode(temp);
NeuralConnection.connect(temp, m_outputs[noa]);
}
}
/**
* Call this function to automatically generate the hidden units
*/
private void setupHiddenLayer()
{
StringTokenizer tok = new StringTokenizer(m_hiddenLayers, ",");
int val = 0; //num of nodes in a layer
int prev = 0; //used to remember the previous layer
int num = tok.countTokens(); //number of layers
String c;
for (int noa = 0; noa < num; noa++) {
//note that I am using the Double to get the value rather than the
//Integer class, because for some reason the Double implementation can
//handle leading white space and the integer version can't!?!
c = tok.nextToken().trim();
if (c.equals("a")) {
val = (m_numAttributes + m_numClasses) / 2;
}
else if (c.equals("i")) {
val = m_numAttributes;
}
else if (c.equals("o")) {
val = m_numClasses;
}
else if (c.equals("t")) {
val = m_numAttributes + m_numClasses;
}
else {
val = Double.valueOf(c).intValue();
}
for (int nob = 0; nob < val; nob++) {
NeuralNode temp = new NeuralNode(String.valueOf(m_nextId), m_random,
m_sigmoidUnit);
m_nextId++;
temp.setX(.5 / (num) * noa + .25);
temp.setY((nob + 1.0) / (val + 1));
addNode(temp);
if (noa > 0) {
//then do connections
for (int noc = m_neuralNodes.length - nob - 1 - prev;
noc < m_neuralNodes.length - nob - 1; noc++) {
NeuralConnection.connect(m_neuralNodes[noc], temp);
}
}
}
prev = val;
}
tok = new StringTokenizer(m_hiddenLayers, ",");
c = tok.nextToken();
if (c.equals("a")) {
val = (m_numAttributes + m_numClasses) / 2;
}
else if (c.equals("i")) {
val = m_numAttributes;
}
else if (c.equals("o")) {
val = m_numClasses;
}
else if (c.equals("t")) {
val = m_numAttributes + m_numClasses;
}
else {
val = Double.valueOf(c).intValue();
}
if (val == 0) {
for (int noa = 0; noa < m_numAttributes; noa++) {
for (int nob = 0; nob < m_numClasses; nob++) {
NeuralConnection.connect(m_inputs[noa], m_neuralNodes[nob]);
}
}
}
else {
for (int noa = 0; noa < m_numAttributes; noa++) {
for (int nob = m_numClasses; nob < m_numClasses + val; nob++) {
NeuralConnection.connect(m_inputs[noa], m_neuralNodes[nob]);
}
}
for (int noa = m_neuralNodes.length - prev; noa < m_neuralNodes.length;
noa++) {
for (int nob = 0; nob < m_numClasses; nob++) {
NeuralConnection.connect(m_neuralNodes[noa], m_neuralNodes[nob]);
}
}
}
}
/**
* This will go through all the nodes and check if they are connected
* to a pure output unit. If so they will be set to be linear units.
* If not they will be set to be sigmoid units.
*/
private void setEndsToLinear() {
for (int noa = 0; noa < m_neuralNodes.length; noa++) {
if ((m_neuralNodes[noa].getType() & NeuralConnection.OUTPUT) ==
NeuralConnection.OUTPUT) {
((NeuralNode)m_neuralNodes[noa]).setMethod(m_linearUnit);
}
else {
((NeuralNode)m_neuralNodes[noa]).setMethod(m_sigmoidUnit);
}
}
}
/**
* Call this function to build and train a neural network for the training
* data provided.
* @param i The training data.
* @exception Throws exception if can't build classification properly.
*/
public void buildClassifier(Instances i) throws Exception {
if (i.checkForStringAttributes()) {
throw new UnsupportedAttributeTypeException("Cannot handle string attributes!");
}
if (i.numInstances() == 0) {
throw new IllegalArgumentException("No training instances.");
}
m_epoch = 0;
m_error = 0;
m_instances = null;
m_currentInstance = null;
m_controlPanel = null;
m_nodePanel = null;
m_outputs = new NeuralEnd[0];
m_inputs = new NeuralEnd[0];
m_numAttributes = 0;
m_numClasses = 0;
m_neuralNodes = new NeuralConnection[0];
m_selected = new FastVector(4);
m_graphers = new FastVector(2);
m_nextId = 0;
m_stopIt = true;
m_stopped = true;
m_accepted = false;
m_instances = new Instances(i);
m_instances.deleteWithMissingClass();
if (m_instances.numInstances() == 0) {
m_instances = null;
throw new IllegalArgumentException("All class values missing.");
}
m_random = new Random(m_randomSeed);
m_instances.randomize(m_random);
if (m_useNomToBin) {
m_nominalToBinaryFilter = new NominalToBinary();
m_nominalToBinaryFilter.setInputFormat(m_instances);
m_instances = Filter.useFilter(m_instances,
m_nominalToBinaryFilter);
}
m_numAttributes = m_instances.numAttributes() - 1;
m_numClasses = m_instances.numClasses();
setClassType(m_instances);
//this sets up the validation set.
Instances valSet = null;
//numinval is needed later
int numInVal = (int)(m_valSize / 100.0 * m_instances.numInstances());
if (m_valSize > 0) {
if (numInVal == 0) {
numInVal = 1;
}
valSet = new Instances(m_instances, 0, numInVal);
}
///////////
setupInputs();
setupOutputs();
if (m_autoBuild) {
setupHiddenLayer();
}
/////////////////////////////
//this sets up the gui for usage
if (m_gui) {
m_win = new JFrame();
m_win.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
boolean k = m_stopIt;
m_stopIt = true;
int well =JOptionPane.showConfirmDialog(m_win,
"Are You Sure...\n"
+ "Click Yes To Accept"
+ " The Neural Network"
+ "\n Click No To Return",
"Accept Neural Network",
JOptionPane.YES_NO_OPTION);
if (well == 0) {
m_win.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
m_accepted = true;
blocker(false);
}
else {
m_win.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
}
m_stopIt = k;
}
});
m_win.getContentPane().setLayout(new BorderLayout());
m_win.setTitle("Neural Network");
m_nodePanel = new NodePanel();
JScrollPane sp = new JScrollPane(m_nodePanel,
JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,
JScrollPane.HORIZONTAL_SCROLLBAR_NEVER);
m_controlPanel = new ControlPanel();
m_win.getContentPane().add(sp, BorderLayout.CENTER);
m_win.getContentPane().add(m_controlPanel, BorderLayout.SOUTH);
m_win.setSize(640, 480);
m_win.setVisible(true);
}
//This sets up the initial state of the gui
if (m_gui) {
blocker(true);
m_controlPanel.m_changeEpochs.setEnabled(false);
m_controlPanel.m_changeLearning.setEnabled(false);
m_controlPanel.m_changeMomentum.setEnabled(false);
}
//For silly situations in which the network gets accepted before training
//commenses
if (m_numeric) {
setEndsToLinear();
}
if (m_accepted) {
m_win.dispose();
m_controlPanel = null;
m_nodePanel = null;
m_instances = new Instances(m_instances, 0);
return;
}
//connections done.
double right = 0;
double driftOff = 0;
double lastRight = Double.POSITIVE_INFINITY;
double tempRate;
double totalWeight = 0;
double totalValWeight = 0;
double origRate = m_learningRate; //only used for when reset
//ensure that at least 1 instance is trained through.
if (numInVal == m_instances.numInstances()) {
numInVal--;
}
if (numInVal < 0) {
numInVal = 0;
}
for (int noa = numInVal; noa < m_instances.numInstances(); noa++) {
if (!m_instances.instance(noa).classIsMissing()) {
totalWeight += m_instances.instance(noa).weight();
}
}
if (m_valSize != 0) {
for (int noa = 0; noa < valSet.numInstances(); noa++) {
if (!valSet.instance(noa).classIsMissing()) {
totalValWeight += valSet.instance(noa).weight();
}
}
}
m_stopped = false;
for (int noa = 1; noa < m_numEpochs + 1; noa++) {
right = 0;
for (int nob = numInVal; nob < m_instances.numInstances(); nob++) {
m_currentInstance = m_instances.instance(nob);
if (!m_currentInstance.classIsMissing()) {
//this is where the network updating (and training occurs, for the
//training set
resetNetwork();
calculateOutputs();
tempRate = m_learningRate * m_currentInstance.weight();
if (m_decay) {
tempRate /= noa;
}
right += (calculateErrors() / m_instances.numClasses()) *
m_currentInstance.weight();
updateNetworkWeights(tempRate, m_momentum);
}
}
right /= totalWeight;
if (Double.isInfinite(right) || Double.isNaN(right)) {
if (!m_reset) {
m_instances = null;
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -