?? find_mpe.m
字號:
function mpe = find_mpe(engine, evidence, varargin)
% FIND_MPE Find the most probable explanation of the data (assignment to the hidden nodes)
% function mpe = find_mpe(engine, evidence,...)
%
% evidence{i} = [] if X(i) is hidden, and otherwise contains its observed value (scalar or column vector).
%
% The following optional arguments can be specified in the form of name/value pairs:
% [default value in brackets]
%
% soft - a cell array of soft/virtual evidence;
% soft{i} is a prob. distrib. over i's values, or [] [ cell(1,N) ]
%
bnet = bnet_from_engine(engine);
ns = bnet.node_sizes(:);
N = length(bnet.dag);
engine.evidence = evidence;
% set default params
exclude = [];
soft_evidence = cell(1,N);
% parse optional params
args = varargin;
nargs = length(args);
for i=1:2:nargs
switch args{i},
case 'soft', soft_evidence = args{i+1};
otherwise,
error(['invalid argument name ' args{i}]);
end
end
engine.maximize = 1;
onodes = find(~isemptycell(evidence));
hnodes = find(isemptycell(evidence));
pot_type = determine_pot_type(bnet, onodes);
if strcmp(pot_type, 'cg')
check_for_cd_arcs(onodes, bnet.cnodes, bnet.dag);
end
hard_nodes = 1:N;
soft_nodes = find(~isemptycell(soft_evidence));
S = length(soft_nodes);
if S > 0
assert(pot_type == 'd');
assert(mysubset(soft_nodes, bnet.dnodes));
end
% Evaluate CPDs with evidence, and convert to potentials
pot = cell(1, N+S);
for n=1:N
fam = family(bnet.dag, n);
e = bnet.equiv_class(n);
if isempty(bnet.CPD{e})
error(['must define CPD ' num2str(e)])
else
pot{n} = convert_to_pot(bnet.CPD{e}, pot_type, fam(:), evidence);
end
end
for i=1:S
n = soft_nodes(i);
pot{N+i} = dpot(n, ns(n), soft_evidence{n});
end
clqs = engine.clq_ass_to_node([hard_nodes soft_nodes]);
[clpot, seppot] = init_pot(engine, clqs, pot, pot_type, onodes);
[clpot, seppot] = collect_evidence(engine, clpot, seppot);
mpe = find_max_config(engine, clpot, seppot);
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -