?? find_mpe.m
字號:
function mpe = find_mpe(engine, evidence, varargin)
% FIND_MPE Find the most probable explanation of the data (belprop_fg)
% function mpe = find_mpe(engine, evidence,...)
%
% evidence{i} = [] if X(i) is hidden, and otherwise contains its observed value (scalar or column vector).
%
% This finds the marginally most likely value for each hidden node,
% and may give the wrong results even if the graph is acyclic,
% unless you set break_ties = 1.
%
% The following optional arguments can be specified in the form of name/value pairs:
% [default value in brackets]
%
% break_ties is optional. If 1, we will force ties to be broken consistently
% by calling enter_evidence N times. (see Jensen96, p106) Default = 1.
break_ties = 1;
% parse optional params
args = varargin;
nargs = length(args);
for i=1:2:nargs
switch args{i},
case 'break_ties', break_ties = args{i+1};
otherwise,
error(['invalid argument name ' args{i}]);
end
end
engine = enter_evidence(engine, evidence, 'maximize', 1);
observed = ~isemptycell(evidence);
evidence = evidence(:); % hack to handle unrolled DBNs
N = length(evidence);
mpe = cell(1,N);
for i=1:N
m = marginal_nodes(engine, i);
% observed nodes are all set to 1 inside the inference engine, so we must undo this
if observed(i)
mpe{i} = evidence{i};
else
mpe{i} = argmax(m.T);
if break_ties
evidence{i} = mpe{i};
[engine, ll] = enter_evidence(engine, evidence, 'maximize', 1);
end
end
end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -