?? quickscore.m
字號:
function prob = quickscore(fpos, fneg, inhibit, prior, leak)% QUICKSCORE Heckerman's algorithm for BN2O networks.% prob = quickscore(fpos, fneg, inhibit, prior, leak)% % Consider a BN2O (Binary Node 2-layer Noisy-or) network such as QMR with% dieases on the top and findings on the bottom. (We assume all findings are observed,% since hidden leaves can be marginalized away.)% This algorithm takes O(2^|fpos|) time to compute the marginal on all the diseases.%% Inputs:% fpos = the positive findings (a vector of numbers in {1, ..., Nfindings})% fneg = the negative findings (a vector of numbers in {1, ..., Nfindings})% inhibit(i,j) = inhibition prob. for finding i, disease j, or 1.0 if j is not a parent.% prior(j) = prior prob. disease j is ON. We assume prior(off) = 1-prior(on).% leak(i) = inhibition prob. for the leak node for finding i%% Output:% prob(d) = Pr(disease d = on | ev)%% For details, see% - Heckerman, "A tractable inference algorithm for diagnosing multiple diseases", UAI89.% - Rish and Dechter, "On the impact of causal independence", UCI tech report, 1998.%% Note that this algorithm is numerically unstable, since it adds a large number of positive and% negative terms and hopes that some of them exactly cancel.%% For matlab experts, use 'mex' to compile C_quickscore, which has identical behavior to this function.[nfindings ndiseases] = size(inhibit);% make the first disease be always on, for the leak termPon = [1 prior(:)'];Poff = 1-Pon;Uon = [leak(:) inhibit]; % U(f,d) = Pr(f=0|d=1)Uoff = [leak(:) ones(nfindings, ndiseases)]; % Uoff(f,d) = Pr(f=0|d=0)ndiseases = ndiseases + 1;npos = length(fpos);post = zeros(ndiseases, 2);% post(d,1) = alpha Pr(d=off), post(d,2) = alpha Pr(d=m)FP = length(fpos);%allbits = logical(dec2bitv(0:(2^FP - 1), FP));allbits = logical(ind2subv(2*ones(1,FP), 1:(2^FP))-1);for si=1:2^FP bits = allbits(si,:); fprime = fpos(bits); fmask = zeros(1, nfindings); fmask(fneg)=1; fmask(fprime)=1; fmask = logical(fmask); p = 1; pterm = zeros(1, ndiseases); ptermOff = zeros(1, ndiseases); ptermOn = zeros(1, ndiseases); for d=1:ndiseases ptermOff(d) = prod(Uoff(fmask,d)); ptermOn(d) = prod(Uon(fmask,d)); pterm(d) = Poff(d)*ptermOff(d) + Pon(d)*ptermOn(d); end p = prod(pterm); sign = (-1)^(length(fprime)); for d=1:ndiseases myp = p / pterm(d); post(d,1) = post(d,1) + sign*(myp * ptermOff(d)); post(d,2) = post(d,2) + sign*(myp * ptermOn(d)); endendpost(:,1) = post(:,1) .* Poff(:);post(:,2) = post(:,2) .* Pon(:);post = mk_stochastic(post);prob = post(2:end,2)'; % skip the leak term
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -