亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? bayes++.html

?? Bayesian Filtering Classe C++source
?? HTML
?? 第 1 頁(yè) / 共 2 頁(yè)
字號(hào):
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"><HTML><HEAD>	<META HTTP-EQUIV="CONTENT-TYPE" CONTENT="text/html; charset=utf-8">	<TITLE>Bayes++ Bayesian Filtering</TITLE>	<LINK REL="stylesheet" HREF="Deployment/paper.css" TYPE="text/css"></HEAD><H1 ALIGN=CENTER><U>Bayes++</U></H1><H1 ALIGN=CENTER><B>Open Source Bayesian Filtering Classes</B></H1><H2 ALIGN=CENTER>Michael Stevens</H2><P STYLE="margin-bottom: 0cm"><BR></P><CENTER>	<TABLE WIDTH=100% BORDER=5 CELLPADDING=0 CELLSPACING=4 BGCOLOR="#c0c0c0">		<TR VALIGN=TOP>			<TD WIDTH=368 HEIGHT=48>				<H2><A HREF="Bayesian Filtering Classes.html">Bayesian Filtering</A></H2>				<P>Overview of Bayesian filtering with the Filtering Classes				</P>			</TD>			<TD WIDTH=330>				<H2 ALIGN=RIGHT><A HREF="mailto:mail@michael-stevens.de">mail@michael-stevens.de</A></H2>				<H2 ALIGN=RIGHT><A HREF="http://www.acfr.usyd.edu.au/">Australian				Centre for Field Robotics</A></H2>			</TD>		</TR>		<TR VALIGN=TOP>			<TD WIDTH=368>				<H3><A HREF="ClassDocumentation/html/index.html">Documentation				generated by Doxygen</A></H3>				<BLOCKQUOTE><A HREF="ClassDocumentation/html/classBayesian__filter_1_1Bayes__filter__base.html">Filter				hierarchy</A><BR><A HREF="ClassDocumentation/html/classBayesian__filter_1_1Predict__model__base.html">Prediction				models</A> and <A HREF="ClassDocumentation/html/classBayesian__filter_1_1Observe__model__base.html">Observation				models</A><BR><BR><A HREF="ClassDocumentation/html/functions.html">Class				members</A> and <A HREF="ClassDocumentation/html/files.html">File				list of Bayes++</A>				</BLOCKQUOTE>			</TD>			<TD WIDTH=330>				<H3 ALIGN=RIGHT><A NAME="download"></A><A HREF="http://sourceforge.net/projects/bayesclasses/">Project				Summary</A> and <A HREF="http://sourceforge.net/project/showfiles.php?group_id=54729">Download</A></H3>				<P ALIGN=RIGHT><A NAME="CVS_Repository"></A><IMG SRC="http://sourceforge.net/sflogo.php?group_id=54729&amp;type=5" NAME="Grafik1" ALT="SourceForge Logo" ALIGN=TOP WIDTH=120 HEIGHT=40 BORDER=0>				<A HREF="http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/bayesclasses">CVS				Repository</A><BR>Bayes++ uses the <A HREF="http://www.boost.org/" TARGET="_top"><FONT SIZE=5>Boost</FONT></A><BR>peer-reviewed				portable C++ source libraries</P>			</TD>		</TR>	</TABLE></CENTER><P ALIGN=LEFT>      Bayesian Filtering is a probabilistic technique for data fusion. The technique combines a concise mathematical formulation of a system with observations of that system. Probabilities are used to represent the state of a system, likelihood functions to represent their relationships. In this form Bayesian inference can be applied and further related probabilities deduced. See <A HREF="http://www.wikipedia.org/">Wikipedia</A> for information on <A HREF="http://www.wikipedia.org/wiki/Probability_theory">Probabilitytheory</A>, <A HREF="http://www.wikipedia.org/wiki/Bayes'_theorem">Bayestheorem</A>, <A HREF="http://www.wikipedia.org/wiki/Bayesian_inference">BayesianInference</A>.</P><P ALIGN=LEFT>For <U>discrete</U> systems the Bayesian formulationresults in a naturally iterative data fusion solution. For <U>dynamic</U>systems there is a class of solutions, discrete <U>filters</U>, that combine observed outputs of the system with the system's dynamic model. An <U>estimator</U> computes a estimate of the systems state with each observationof the system. Linear estimators such as the Kalman Filter are commonly applied.</P><P ALIGN=LEFT>Bayes++ is an open source library of C++ classes. Theseclasses represent and implement a wide variety of numericalalgorithms for Bayesian Filtering of discrete systems. The classesprovide tested and consistent numerical methods and the classhierarchy explicitly represents the variety of filtering algorithmsand system model types.</P><H2>Simple Example</H2><P>This is very simple example; for those who have never used theBayesian Filtering Classes before. If you wish to see how simple itis to use Bayes++ then <A HREF="Simple/simpleExample.cpp">View theSource</A>.</P><P>The example shows how two classes are created. The first is theprediction model, the second the observation model. In this examplethey represent a simple linear problem with only one state variableand constant model noises. A filter fuses the results of predictionand observation.</P><P>See the <A HREF="Bayesian Filtering Classes.html">BayesianFiltering classes</A> for a description of the classes used andall three examples provided with Bayes++.</P><H2>Compiling the Examples</H2><P>First <A HREF="#download">download</A> and extract <B>Bayes++</B>and also the <B>Boost</B> library. <B>Boost</B> is used to providecompiler independence, and a common build system. Two Boost headerlibraries are used: <B>uBLAS</B> for linear algebra, and <B>random</B>for the PV and QuadCalib examples. The Boost headers can be placedanywhere relative to Bayes++, but it is easy if you follow thisstructure:</P><DL>	<DD><DL>		<DT><EM>...sourceDirectory</EM></DT>		<DD><DL>			<DT>Bayes++</DT>				<DD>BayesFilter</DD>				<DD>PV</DD>				<DD>QuadCalib</DD>				<DD>Simple</DD>				<DD>Test</DD>		</DL></DD>		<DD><DL>			<DT>boost_1_33_1</DT>				<DD>boost</DD>				<DD><I>etc</I></DD>		</DL></DD>	</DL></DD></DL><P><P>Using the Boost Build system version 2 is the best way to compile theexamples. This uses the <B>bjam</B> (Boost jam) program to computedependencies and invoke the compiler. The documentation in yourdownloaded copy of Boost explains how to obtain compile the latestversion of bjam yourself. For everything to work <B>bjam</B> must beplaced in the path. <BR>To build Bayes++ and the examples simplyexecute: (Bayes++ should be the current directory)</P><PRE STYLE="margin-bottom: 0.5cm">        bjam --v2 -sBOOST_ROOT=&quot;../boost_1_33_1&quot;</PRE><P>If there is more then one toolsets (compiler etc) available you maywant to tell bjam which to use. For example to use Visual C++execute:</P><PRE STYLE="margin-bottom: 0.5cm">        bjam --v2 msvc -sBOOST_ROOT=&quot;../boost_1_33_1&quot;</PRE><P>It is possible to drop the BOOST_ROOT variable by either creating a<B>build_build.jam</B> file in <I>sourceDirectory</I> (or above) orby setting it as an environment variable.</P></P><H4>Location of compiled examples and libraries</H4><P>The executables for the three examples will be placed inside adirectory hierarchy named <B>target</B>. Static libraries for debugand release builds of the <B>BayesFilter</B> library are placed in<B>target/BayesFilter</B>. The <B>target</B> directory and its subdirectoriesare created automatically.</P?<H4>Visual C++ solution</H4><P>For Visual C++ 7.0/7.1/8.0 etc, you can also use the <B>Bayes++.sln</B> solutionand the active configuration <B>uBLAS Debug</B>. The compiler optionsmust be set so the <B>Boost</B> include files can be found. That is,the <U>include path</U> must contain the base directory of Boost. Inthis case the local <B>boost</B> directory. In VC7.1 you should dothis by choosing the <I>Tools/Options/Projects/VC++ Directories</I>option.</P><P>Visual C++ 7.0 requires the use of Boost version 1_32_0. Visual C++ 7.1 (or later) requires Boost version 1_33_0 (or later).I</P><H2>Licensing</H2><P>All Bayes++ source code files are copyright with the licenseconditions as given here. The copyright notice is that of the MITlicense. This in no way restricts any commercial use you may wish tomake using our source code. As long as you respect the copyright andlicense conditions, Michael Stevens and the Australian Centre forField Robotics are happy to for you to use it in any way you wish.</P><P>Bayes++ the Bayesian Filtering Library</P><P>Copyright (c) 2003,2004,2005 Michael Stevens, Copyright (c) 2002Michael Stevens and Australian Centre for Field Robotics</P><P>Permission is hereby granted, free of charge, to any personobtaining a copy of this software and associated documentation files(the &quot;Software&quot;), to deal in the Software withoutrestriction, including without limitation the rights to use, copy,modify, merge, publish, distribute, sublicense, and/or sell copies ofthe Software, and to permit persons to whom the Software is furnishedto do so, subject to the following conditions:</P><P>The above copyright notice and this permission notice shall beincluded in all copies or substantial portions of the Software.</P><P>THE SOFTWARE IS PROVIDED &quot;AS IS&quot;, WITHOUT WARRANTY OFANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THEWARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE ANDNON INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERSBE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN ANACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR INCONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THESOFTWARE.</P><H2>SLAM : Simultaneous Localization and Mapping</H2><P>SLAM is one of the most interesting problems in Bayesianfiltering. It's structure implies that it cannot be correctly solvedwithout using stochastic approach. This is due to mapped states beingdependent on other mapped states and the localization state. Thisdependence also make the problem complex, therefore a simple approachsuch as representing all correlations is not tractable for largenumbers of states.</P><P>Bayes++ has been used to implement various simple and some moreadvanced SLAM solutions. In particular a full implementation ofFastSLAM has been implemented. This technique is described in thepaper &quot;FastSLAM : Factored Solution to the SimultaneousLocalization and Mapping Problem&quot;, M. Montemerlo, S. Thrun S, D.Koller, B. Wegbreit, Proceedings of the AAAI National Conference onArtificial Intelligence 2002.</P><P>The Bayes++ implementation of FastSLAM and a very simple Kalman(full correlation) SLAM implementation is available as part of themost recent <A HREF="#download">download</A>.</P><H2>Scilab, Matlab, MuPAD</H2><P>These mathematical tools are particularly useful for visualisingfiltering results. However they are all rather slow, and it is veryeasy to produce very poorly implemented filters in their programminglanguages. Fortunately all these tools provide mechanisms forextension with external programs. Example interface code is providedin the <A HREF="#CVS_Repository">Bayes++ CVS repository</A> forMatlab and MuPAD. An interface to Scilab is not yet available.</P><H2>Portability</H2><P>Bayes++ only makes use of ISO standard C++. The source code usesmoderately advance C++ constructs. It only makes restricted use ofthe C++ template system directly. However the Boost libraries used(in particular uBLAS) make extensive use of template techniques.Boost also includes many workarounds for compiler deficiencies.Therefore with few alterations Bayes++ should work with any modernC++ compiler supported by Boost.</P><P>Bayes++ is tested with: <B>Boost 1.33.0</B></P><P>Bayes++ is tested with: <B>GCC 3.3.5</B>, <B>GCC 3.4.4, <B>GCC 4.0.0</B>,<B>VisualC++ 7.1</B> and <B>IntelC++ 8.1</B></P><P>Later versions of GCC 3.x and GCC 4.x should also run Bayes++ with ease.However GCC 3.3.0 is know to be incompatible with uBLAS and toproduce incorrect code with -O2 optimization.</P><P>VisualC++ 7.1 often requiresthe /Zm option to be used so it can compile complex headers.</P><H2>Release Criteria</H2><P>This releases is validated using the compilers and Boost versionslisted above using the following tests.</P><OL><LI><P>Build system: Compatibility with both Boost Build version 1and version 2.<BR>Successfully complete <B>bjam</B> to build defaultlibraries and examples.<BR>Successfully complete <B>bjam</B> to buildSLAM system.</P><LI><P>Test examples: simpleExample, PV, QuadCalib <BR>Compile debugand release builds (using Boost Build version 2) :- with no errorsand no warnings.<BR>Execution output :- Identical to expectedreference results.</P><LI><P>Numerical tests: rtheta - Range angle observer.<BR>Anon-linear range angle observer test. The observer moves in a 2dimensional state space. Motion prediction occurs with a linearmodel with additive noise. The two states are coupled both in themodel and in additive noise. Range and angle of a fixed target isobserved. The target is placed so discontinues angles are

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久亚洲精精品中文字幕早川悠里| 国产精品福利在线播放| 国产精品1区二区.| 亚洲高清免费观看高清完整版在线观看 | 国产乱码精品一区二区三区忘忧草| 亚洲天堂网中文字| 精品粉嫩超白一线天av| 欧美视频在线观看一区| 丁香婷婷综合网| 久久精品国产亚洲a| 亚洲午夜日本在线观看| 国产精品网友自拍| 337p粉嫩大胆噜噜噜噜噜91av| 欧美视频一区在线观看| 成人av影视在线观看| 狠狠色丁香久久婷婷综| 日本在线观看不卡视频| 亚洲国产日韩在线一区模特| 国产精品久久国产精麻豆99网站| 欧美sm极限捆绑bd| 91精品国产综合久久精品| 欧美影院一区二区三区| 91玉足脚交白嫩脚丫在线播放| 国产二区国产一区在线观看| 久久se精品一区精品二区| 天天av天天翘天天综合网色鬼国产 | 日韩av一区二区三区四区| 一区二区三区四区蜜桃| 中文字幕一区二区在线播放| 久久久美女毛片| 精品国产3级a| 精品福利一二区| 日韩欧美二区三区| 日韩一区二区三区电影 | 欧美在线播放高清精品| 9人人澡人人爽人人精品| 国产91精品一区二区麻豆网站 | 亚洲va韩国va欧美va| 洋洋成人永久网站入口| 玉足女爽爽91| 亚洲国产aⅴ成人精品无吗| 亚洲成人一区二区| 日韩国产欧美视频| 另类小说色综合网站| 极品美女销魂一区二区三区免费 | 青青草原综合久久大伊人精品| 午夜精品久久久久久久99樱桃| 夜夜嗨av一区二区三区中文字幕| 一区二区三区不卡视频在线观看| 亚洲人成网站精品片在线观看| 亚洲另类一区二区| 亚洲主播在线播放| 男女性色大片免费观看一区二区 | 最好看的中文字幕久久| 中文字幕日韩一区二区| 亚洲日本中文字幕区| 亚洲综合区在线| 强制捆绑调教一区二区| 国内精品久久久久影院薰衣草| 国产成人小视频| 色综合婷婷久久| 亚洲欧洲成人精品av97| 亚洲女同ⅹxx女同tv| 亚洲成人综合网站| 精品一区二区三区在线视频| 国产91综合一区在线观看| 色噜噜偷拍精品综合在线| 欧美色欧美亚洲另类二区| 日韩一区二区在线观看视频| 欧美tk—视频vk| 亚洲图片欧美激情| 免费观看成人鲁鲁鲁鲁鲁视频| 精品影院一区二区久久久| 成人av小说网| 91精品国产91久久久久久最新毛片 | 国产成人亚洲综合a∨婷婷图片| a级精品国产片在线观看| 在线不卡一区二区| 日本一二三四高清不卡| 一区二区三区美女视频| 蜜桃在线一区二区三区| 99热这里都是精品| 制服丝袜国产精品| 中文字幕欧美一区| 日韩福利视频网| av电影一区二区| 欧美一区二区三区的| 国产精品久久午夜| 日韩国产精品91| 91首页免费视频| 日韩三级免费观看| 一区二区三区高清在线| 国产一区二区伦理| 欧美日韩黄视频| 中文字幕av不卡| 久久精品国产第一区二区三区| 99视频在线精品| 欧美大片在线观看| 亚洲一区二区三区自拍| 国产剧情一区在线| 欧美一区二区三区在线观看视频 | 亚洲成人综合网站| 99re成人在线| 26uuu色噜噜精品一区二区| 性做久久久久久久久| av网站免费线看精品| 久久综合色天天久久综合图片| 亚洲综合网站在线观看| 懂色av中文字幕一区二区三区 | 亚洲欧美日韩小说| 国产suv精品一区二区6| 日韩精品一区二区三区视频播放| 樱花影视一区二区| 99视频在线精品| 欧美国产国产综合| 国产精品一二三在| 91精品国产综合久久福利| 一区二区三区在线观看欧美| 成人性色生活片| 久久久另类综合| 国产一区二区三区久久悠悠色av| 69av一区二区三区| 天堂成人免费av电影一区| 欧美性xxxxxxxx| 亚洲国产精品一区二区尤物区| 色哟哟一区二区三区| 国产精品理论片| 99久久久久久99| 国产精品欧美经典| 成人手机电影网| 中国av一区二区三区| 国产成人av电影在线| 久久久久久一级片| 国产精品综合一区二区| 2023国产精品| 国产伦精品一区二区三区视频青涩 | 婷婷丁香激情综合| 欧美精品在线观看播放| 舔着乳尖日韩一区| 欧美另类变人与禽xxxxx| 天堂av在线一区| 欧美一级精品在线| 久久99久久久欧美国产| 精品美女在线观看| 国产一区二区三区精品视频| 国产午夜一区二区三区| 成人亚洲一区二区一| 亚洲色图一区二区三区| 色天使色偷偷av一区二区| 亚洲一区在线观看网站| 欧美高清一级片在线| 精品一区免费av| 国产欧美一区视频| voyeur盗摄精品| 亚洲在线免费播放| 日韩一区二区视频| 日本欧美一区二区三区| 在线观看区一区二| 日本成人中文字幕| 国产女人aaa级久久久级| 91在线porny国产在线看| 午夜久久福利影院| 久久午夜电影网| 91麻豆文化传媒在线观看| 午夜精品视频在线观看| 亚洲精品在线观看网站| 不卡视频在线看| 午夜成人免费电影| 国产色产综合产在线视频| 91污片在线观看| 蜜臀av亚洲一区中文字幕| 国产香蕉久久精品综合网| 色噜噜狠狠一区二区三区果冻| 欧美a级理论片| 国产精品视频看| 欧美性大战久久| 国产麻豆精品95视频| 亚洲综合色自拍一区| 久久久久久影视| 欧美日韩中字一区| 国产河南妇女毛片精品久久久| 亚洲精品国产精华液| 亚洲精品一线二线三线无人区| 97精品久久久久中文字幕| 蜜桃久久久久久久| 亚洲日本在线观看| 精品少妇一区二区三区在线视频| 99re免费视频精品全部| 久久精品国产在热久久| 洋洋av久久久久久久一区| 久久嫩草精品久久久精品一| 欧美亚洲一区二区在线| 国产美女娇喘av呻吟久久| 五月天亚洲精品| ...中文天堂在线一区| 久久嫩草精品久久久精品一| 欧美日韩免费视频| 99久久婷婷国产综合精品| 久久电影国产免费久久电影 | 日韩中文欧美在线|