亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? bayesflt.hpp

?? Bayesian Filtering Classe C++source
?? HPP
?? 第 1 頁 / 共 2 頁
字號:
#ifndef _BAYES_FILTER#define _BAYES_FILTER/* * Bayes++ the Bayesian Filtering Library * Copyright (c) 2002 Michael Stevens * See accompanying Bayes++.htm for terms and conditions of use. * * $Id: bayesFlt.hpp 562 2006-04-05 20:46:23 +0200 (Wed, 05 Apr 2006) mistevens $ *//* * Bayesian filtering reresented as Dual heirarchy of: *  Prediction and Observation models *  Filtering Schemes */ // Common headers required for declerations#include "bayesException.hpp"	// exception types#include "matSupSub.hpp"			// matrix support subsystem/* Filter namespace */namespace Bayesian_filter{	// Allow use of a short name for matrix namespace	namespace FM = Bayesian_filter_matrix;/* * Abstraction support classes, at the base of the heirarchy */class Bayes_base {/* * A very abstract Polymorphic base representation! * Interface provides: type, internal error handing, and destruction */public:	typedef Bayesian_filter_matrix::Float Float;	// Type used thoughout as a number representation for state etc	virtual ~Bayes_base() = 0;	// Polymorphic	static void error (const Numeric_exception& a);	static void error (const Logic_exception& a);	// Report a filter, throw a Filter_exception	//  No exception saftey rules are specified, assume the object is invalid	// May have side effects for debuging};class Numerical_rcond/* * Numerical comparison of reciprocal condition numbers *  Required for all linear algebra in models and filters *  Implements minimum allowable reciprocal condition number for PD Matrix factorisations */{public:	Numerical_rcond()	{	limit_PD = limit_PD_init;	}	void set_limit_PD(Bayes_base::Float nl)	{	limit_PD = nl;	}	inline void check_PSD (Bayes_base::Float rcond, const char* error_description) const	/* Checks a the reciprocal condition number	 * Generates a Bayes_filter_exception if value represents a NON PSD matrix	 * Inverting condition provides a test for IEC 559 NaN values	 */	{	if (!(rcond >= 0))			Bayes_base::error (Numeric_exception (error_description));	}	inline void check_PD (Bayes_base::Float rcond, const char* error_description) const	/* Checks a reciprocal condition number	 * Generates a Bayes_filter_exception if value represents a NON PD matrix	 * I.e. rcond is bellow given conditioning limit	 * Inverting condition provides a test for IEC 559 NaN values	 */	{	if (!(rcond >= limit_PD))			Bayes_base::error (Numeric_exception (error_description));	}private:	Bayes_base::Float limit_PD;			const static Bayes_base::Float limit_PD_init;	// Initial common value for limit_PD};/* * Abstract Prediction models *  Predict models are used to parameterise predict functions of filters */class Predict_model_base : public Bayes_base{	// Empty};class Sampled_predict_model : virtual public Predict_model_base/* Sampled stochastic predict model    x*(k) = fw(x(k-1), w(k))   fw should generate samples from the stochastic variable w(k)   This fundamental model is used instead of the predict likelihood function L(x*|x)   Since drawing samples from an arbitary L is non-trivial (see MCMC theory)   the burden is place on the model to generate these samples.   Defines an Interface without data members */{public:	virtual const FM::Vec& fw(const FM::Vec& x) const = 0;	// Note: Reference return value as a speed optimisation, MUST be copied by caller.};class Functional_predict_model :virtual public Predict_model_base/* Functional (non-stochastic) predict model f    x*(k) = fx(x(k-1))   This fundamental model is used instead of the predict likelihood function L(x*|x)   Since L is a delta function which isn't much use for numerical systems.   Defines an Interface without data members */{public:	virtual const FM::Vec& fx(const FM::Vec& x) const = 0;	// Functional model	// Note: Reference return value as a speed optimisation, MUST be copied by caller.		const FM::Vec& operator()(const FM::Vec& x) const	{	// Operator form of functional model		return fx(x);	}};class Gaussian_predict_model : virtual public Predict_model_base/* Gaussian noise predict model   This fundamental noise model for linear/linearised filtering    x(k|k-1) = x(k-1|k-1)) + G(k)w(k)    G(k)w(k)    q(k) = state noise covariance, q(k) is covariance of w(k)    G(k) = state noise coupling*/{public:	Gaussian_predict_model (std::size_t x_size, std::size_t q_size);	FM::Vec q;		// Noise variance (always dense, use coupling to represent sparseness)	FM::Matrix G;		// Noise Coupling		Numerical_rcond rclimit;	// Reciprocal condition number limit of linear components when factorised or inverted};class Addative_predict_model : virtual public Predict_model_base/* Addative Gaussian noise predict model   This fundamental model for non-linear filtering with addative noise    x(k|k-1) = f(x(k-1|k-1)) + G(k)w(k)    q(k) = state noise covariance, q(k) is covariance of w(k)    G(k) = state noise coupling   ISSUE Should be privately derived from Gaussian_predict_model but access control in GCC is broken*/{public:	Addative_predict_model (std::size_t x_size, std::size_t q_size);	virtual const FM::Vec& f(const FM::Vec& x) const = 0;	// Functional part of addative model	// Note: Reference return value as a speed optimisation, MUST be copied by caller.	FM::Vec q;		// Noise variance (always dense, use coupling to represent sparseness)	FM::Matrix G;		// Noise Coupling	Numerical_rcond rclimit;	// Reciprocal condition number limit of linear components when factorised or inverted};class Linrz_predict_model : public Addative_predict_model/* Linrz predict model   This fundamental model for linear/linearised filtering    x(k|k-1) = f(x(k-1|k-1)    Fx(x(k-1|k-1) = Jacobian of of functional part fx with respect to state x */{public:	Linrz_predict_model (std::size_t x_size, std::size_t q_size);	FM::Matrix Fx;		// Model};class Linear_predict_model : public Linrz_predict_model/* Linear predict model   Enforces linearity on f    x(k|k-1) = Fx(k-1|k-1) * x(k-1|k-1) */{public:	Linear_predict_model (std::size_t x_size, std::size_t q_size);	const FM::Vec& f(const FM::Vec& x) const	{	// Provide the linear implementation of functional f		xp.assign (FM::prod(Fx,x));		return xp;	}private:	mutable FM::Vec xp;};class Linear_invertable_predict_model : public Linear_predict_model/* Linear invertable predict model   Fx has an inverse    x(k-1|k-1) = inv.Fx(k-1|k-1) * x(k|k-1) */{public:	Linear_invertable_predict_model (std::size_t x_size, std::size_t q_size);	struct inverse_model {		inverse_model (std::size_t x_size);		FM::ColMatrix Fx;	// Model inverse (ColMatrix as usually transposed)	} inv;};/* * Abstract Observation models *  Observe models are used to parameterise the observe functions of filters */class Observe_model_base : public Bayes_base{	// Empty};class Observe_function : public Bayes_base// Function object for predict of observations{public:	virtual const FM::Vec& h(const FM::Vec& x) const = 0;	// Note: Reference return value as a speed optimisation, MUST be copied by caller.};class Likelihood_observe_model : virtual public Observe_model_base/* Likelihood observe model L(z |x) *  The most fundamental Bayesian definition of an observation * Defines an Interface without data members */{public:	Likelihood_observe_model(std::size_t z_size) : z(z_size)	{}	virtual Float L(const FM::Vec& x) const = 0;	// Likelihood L(z | x)	virtual void Lz (const FM::Vec& zz)	// Set the observation zz about which to evaluate the Likelihood function	{		z = zz;	}protected:	FM::Vec z;			// z set by Lz};class Functional_observe_model : virtual public Observe_model_base, public Observe_function/* Functional (non-stochastic) observe model h *  zp(k) = hx(x(k|k-1)) * This is a seperate fundamental model and not derived from likelihood because: *  L is a delta function which isn't much use for numerical systems * Defines an Interface without data members */{public:	Functional_observe_model(std::size_t /*z_size*/)	{}	const FM::Vec& operator()(const FM::Vec& x) const	{	return h(x);	}};class Parametised_observe_model : virtual public Observe_model_base, public Observe_function/* Observation model parametised with a fixed z size *  Includes the functional part of a noise model *  Model is assume to have linear and non-linear components *  Linear components need to be checked for conditioning *  Non-linear components may be discontinous and need normalisation */{public:	Parametised_observe_model(std::size_t /*z_size*/)	{}	virtual const FM::Vec& h(const FM::Vec& x) const = 0;	// Functional part of addative model	virtual void normalise (FM::Vec& /*z_denorm*/, const FM::Vec& /*z_from*/) const	// Discontinous h. Normalise one observation (z_denorm) from another	{}	//  Default normalistion, z_denorm unchanged		Numerical_rcond rclimit;	// Reciprocal condition number limit of linear components when factorised or inverted};class Uncorrelated_addative_observe_model : public Parametised_observe_model/* Observation model, uncorrelated addative observation noise	Z(k) = I * Zv(k) observe noise variance vector Zv */{public:	Uncorrelated_addative_observe_model (std::size_t z_size) :		Parametised_observe_model(z_size), Zv(z_size)	{}	FM::Vec Zv;			// Noise Variance};class Correlated_addative_observe_model : public Parametised_observe_model/* Observation model, correlated addative observation noise    Z(k) = observe noise covariance */{public:	Correlated_addative_observe_model (std::size_t z_size) :		Parametised_observe_model(z_size), Z(z_size,z_size)	{}	FM::SymMatrix Z;	// Noise Covariance (not necessarly dense)};class Jacobian_observe_model : virtual public Observe_model_base/* Linrz observation model Hx, h about state x (fixed size)    Hx(x(k|k-1) = Jacobian of h with respect to state x	Normalisation consistency Hx: Assume normalise will be from h(x(k|k-1)) so result is consistent with Hx */{public:	FM::Matrix Hx;		// Modelprotected: // Jacobian model is not sufficient, it is used to build Linrz observe model's	Jacobian_observe_model (std::size_t x_size, std::size_t z_size) :		Hx(z_size, x_size)	{}};class Linrz_correlated_observe_model : public Correlated_addative_observe_model, public Jacobian_observe_model/* Linrz observation model Hx, h with repespect to state x (fixed size)    correlated observation noise    zp(k) = h(x(k-1|k-1)    Hx(x(k|k-1) = Jacobian of f with respect to state x    Z(k) = observe noise covariance */{public:	Linrz_correlated_observe_model (std::size_t x_size, std::size_t z_size) :		Correlated_addative_observe_model(z_size), Jacobian_observe_model(x_size, z_size)	{}};class Linrz_uncorrelated_observe_model : public Uncorrelated_addative_observe_model, public Jacobian_observe_model/* Linrz observation model Hx, h with repespect to state x (fixed size)    uncorrelated observation noise    zp(k) = h(x(k-1|k-1)    Hx(x(k|k-1) = Jacobian of f with respect to state x    Zv(k) = observe noise covariance */{public:	Linrz_uncorrelated_observe_model (std::size_t x_size, std::size_t z_size) :		Uncorrelated_addative_observe_model(z_size), Jacobian_observe_model(x_size, z_size)	{}};

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产成人免费xxxxxxxx| 日本道免费精品一区二区三区| 亚洲欧美自拍偷拍色图| 欧美日本高清视频在线观看| 国产69精品久久久久毛片 | 一区二区三区免费| 2017欧美狠狠色| 欧美精品99久久久**| www.亚洲人| 国产一区二区按摩在线观看| 亚洲风情在线资源站| 亚洲蜜臀av乱码久久精品| 国产视频911| 欧美成人r级一区二区三区| 欧洲日韩一区二区三区| 成人妖精视频yjsp地址| 国产一区二区视频在线播放| 秋霞电影网一区二区| 亚洲成人av中文| 亚洲三级电影网站| 最新日韩av在线| 欧美极品另类videosde| 久久新电视剧免费观看| 欧美一区二区久久久| 欧美日韩亚洲不卡| 色综合一个色综合亚洲| www.欧美色图| 成人少妇影院yyyy| 国产成人免费网站| 国产精品18久久久久久久久| 国产一区亚洲一区| 国产在线乱码一区二区三区| 久久国产成人午夜av影院| 蜜臀va亚洲va欧美va天堂| 免费不卡在线观看| 久久精品久久99精品久久| 日本人妖一区二区| 裸体一区二区三区| 捆绑调教一区二区三区| 九九国产精品视频| 国产真实乱子伦精品视频| 国内精品国产成人国产三级粉色| 美女高潮久久久| 国产伦精品一区二区三区免费迷| 国产高清久久久| 福利电影一区二区| av一区二区久久| 色综合一个色综合| 欧美日韩国产经典色站一区二区三区| 91黄色免费版| 欧美一区二区三区播放老司机| 日韩欧美在线一区二区三区| 欧美va日韩va| 中文字幕第一区二区| 亚洲日本护士毛茸茸| 亚洲电影第三页| 久久成人综合网| zzijzzij亚洲日本少妇熟睡| 色天使久久综合网天天| 在线综合视频播放| 久久久精品天堂| 国产精品成人在线观看| 一区二区三区日韩欧美精品| 青椒成人免费视频| 粉嫩一区二区三区在线看| 色偷偷久久一区二区三区| 91精品国产综合久久久久久久久久 | 黄色日韩网站视频| 成人黄色网址在线观看| 欧美手机在线视频| 久久久亚洲精品石原莉奈| 中文字幕一区二区三区不卡在线 | 美女视频黄a大片欧美| 国产精品自拍毛片| 在线观看亚洲一区| 日韩精品一区二区三区swag| 国产精品成人网| 天堂资源在线中文精品| 成人性视频免费网站| 欧美视频自拍偷拍| 国产欧美日韩久久| 亚洲福利一区二区| 成人免费视频播放| 91精品婷婷国产综合久久性色| 久久九九久精品国产免费直播| 一区二区三区中文在线| 国产呦精品一区二区三区网站| 日本道色综合久久| 国产视频一区二区在线| 日韩电影一区二区三区四区| 成av人片一区二区| 欧美大片免费久久精品三p| 亚洲天堂精品在线观看| 精品亚洲欧美一区| 欧美丝袜丝交足nylons| 国产精品久久午夜| 黄色日韩三级电影| 欧美日韩黄色影视| 国产精品国产三级国产三级人妇| 免费在线观看视频一区| 色婷婷一区二区| 中文字幕不卡一区| 激情小说欧美图片| 欧美电影影音先锋| 亚洲欧美日韩在线播放| 国产91丝袜在线播放九色| 日韩一二三四区| 亚洲国产aⅴ成人精品无吗| 成人亚洲精品久久久久软件| 精品人伦一区二区色婷婷| 亚洲成a人片在线不卡一二三区| av一区二区久久| 国产日韩视频一区二区三区| 久久疯狂做爰流白浆xx| 欧美一区午夜视频在线观看| 一区二区三区不卡视频| av高清久久久| 国产欧美精品一区二区色综合| 久久精品国产99国产| 欧美男男青年gay1069videost| 亚洲视频每日更新| 99国产精品久久久久久久久久| 国产亚洲人成网站| 精品一区二区三区在线播放视频| 91精品国产aⅴ一区二区| 图片区日韩欧美亚洲| 欧美美女视频在线观看| 午夜免费久久看| 欧美精品日韩一本| 日本少妇一区二区| 欧美一级欧美一级在线播放| 午夜伦欧美伦电影理论片| 欧美日韩成人一区二区| 亚洲va韩国va欧美va| 欧美日本一区二区在线观看| 亚洲第一精品在线| 欧美日韩免费视频| 天天综合天天做天天综合| 欧美午夜在线观看| 日日摸夜夜添夜夜添精品视频| 欧美精品久久一区二区三区| 日本亚洲免费观看| 精品国产乱码久久久久久免费| 免费在线观看不卡| 久久色在线观看| 成人免费毛片高清视频| 17c精品麻豆一区二区免费| 99国产精品久久久| 亚洲国产另类av| 欧美一区二区三区在线电影| 秋霞国产午夜精品免费视频| 久久综合色婷婷| 成人免费视频caoporn| 一区二区三区四区蜜桃| 欧美日韩一本到| 久久不见久久见免费视频7| 久久精品一区二区三区四区| 成人avav影音| 亚洲地区一二三色| 精品动漫一区二区三区在线观看| 国产激情一区二区三区四区| 亚洲欧美怡红院| 欧美精品1区2区| 国产大陆精品国产| 亚洲精品国产无套在线观| 欧美三级电影在线看| 寂寞少妇一区二区三区| 中文字幕中文在线不卡住| 91福利视频网站| 久久精品999| 亚洲男帅同性gay1069| 日韩一区二区在线看| 波多野结衣亚洲| 青草av.久久免费一区| 国产精品美日韩| 欧美精三区欧美精三区| 国产成人免费av在线| 亚洲mv在线观看| 国产目拍亚洲精品99久久精品| 在线区一区二视频| 国产精品中文字幕欧美| 一区二区理论电影在线观看| ww亚洲ww在线观看国产| 在线一区二区观看| 国产乱码精品一区二区三| 亚洲国产成人精品视频| 久久精品一区二区三区不卡牛牛 | 欧美不卡一区二区三区四区| 成人国产免费视频| 捆绑调教一区二区三区| 亚洲主播在线播放| 亚洲国产精品ⅴa在线观看| 91麻豆精品国产91久久久使用方法 | 亚洲综合免费观看高清在线观看| 欧美精品一区二区三区四区| 欧美色综合久久| 97久久超碰精品国产| 精品一区二区三区在线播放| 亚洲一级二级在线| 国产精品免费看片|