亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? bayesflt.hpp

?? Bayesian Filtering Classe C++source
?? HPP
?? 第 1 頁 / 共 2 頁
字號:
class Linear_correlated_observe_model : public Linrz_correlated_observe_model/* Linear observation model, correlated observation noise    zp(k) = Hx(k) * x(k|k-1)    Enforces linear model invariant. Careful when deriving to to change this invariant! */{public:	Linear_correlated_observe_model (std::size_t x_size, std::size_t z_size) :		Linrz_correlated_observe_model(x_size, z_size), hx(z_size)	{}	const FM::Vec& h(const FM::Vec& x) const	{	// Provide a linear implementation of functional h assumes model is already Linrz for Hx		hx.assign (FM::prod(Hx,x));		return hx;	}private:	mutable FM::Vec hx;};class Linear_uncorrelated_observe_model : public Linrz_uncorrelated_observe_model/* Linear observation model, uncorrelated observation noise    zp(k) = Hx(k) * x(k|k-1)    Enforces linear model invariant. Careful when deriving to to change this invariant! */{public:	Linear_uncorrelated_observe_model (std::size_t x_size, std::size_t z_size) :		Linrz_uncorrelated_observe_model(x_size, z_size), hx(z_size)	{}	const FM::Vec& h(const FM::Vec& x) const	{	// Provide a linear implementation of functional h assumes model is already Linrz for Hx		hx.assign (FM::prod(Hx,x));		return hx;	}private:	mutable FM::Vec hx;};/* * Bayesian Filter * * A Bayesian Filter uses Bayes rule to fuse the state probabilities * of a prior and a likelhood function */class Bayes_filter_base : public Bayes_base{	// Empty};/* * Likelihood Filter - Abstract filtering property * Represents only the Bayesian Likelihood of a state observation */class Likelihood_filter : virtual public Bayes_filter_base{public:	/* Virtual functions for filter algorithm */	virtual void observe (Likelihood_observe_model& h, const FM::Vec& z) = 0;	/* Observation state posterior using likelihood model h at z	*/};/* * Functional Filter - Abstract filtering property * Represents only filter predict by a simple functional * (non-stochastic) model *  * A similar functional observe is not generally useful. The inverse of h is needed for observe! */class Functional_filter : virtual public Bayes_filter_base{public:	/* Virtual functions for filter algorithm */	virtual void predict (Functional_predict_model& f) = 0;	/* Predict state with functional no noise model	    Requires x(k|k), X(k|k) or internal equivilent	    Predicts x(k+1|k), X(k+1|k), using predict model	*/};/* * State Filter - Abstract filtering property * Represents only filter state and an update on that state */class State_filter : virtual public Bayes_filter_base{public:	State_filter (std::size_t x_size);	/* Set constant sizes, state must not be empty (must be >=1)	    Exceptions:	     bayes_filter_exception is x_size < 1	 */	FM::Vec x;			// expected state	/* Virtual functions for filter algorithm */	virtual void update () = 0;	/* Update filters state	    Updates x(k|k)	*/};/* * Kalman State Filter - Abstract filtering property * Linear filter representation for 1st (mean) and 2nd (covariance) moments of a distribution * * Probability distributions are represted by state vector (x) and a covariance matix.(X) * * State (x) sizes is assumed to remain constant. * The state and state covariance are public so they can be directly manipulated. *  init: Should be called if x or X are altered *  update: Guarantees that any internal changes made filter are reflected in x,X. *  This allows considerable flexibility so filter implemtations can use different numerical representations * * Derived filters supply definititions for the abstract functions and determine the algorithm used * to implement the filter. */class Kalman_state_filter : public State_filter{public:	FM::SymMatrix X;	// state covariance	Kalman_state_filter (std::size_t x_size);	/* Initialise filter and set constant sizes	 */	/* Virtual functions for filter algorithm */	virtual void init () = 0;	/* Initialise from current state and state covariance	    Requires x(k|k), X(k|k)	*/	void init_kalman (const FM::Vec& x, const FM::SymMatrix& X);	/* Initialise from a state and state covariance	    Parameters that reference the instance's x and X members are valid	*/	virtual void update () = 0;	/* Update filters state and state covariance 	    Updates x(k|k), X(k|k)	*/							// Minimum allowable reciprocal condition number for PD Matrix factorisations	Numerical_rcond rclimit;};/* * Information State Filter - Abstract filtering property * Linear filter information space representation for 1st (mean) and 2nd (covariance) moments of a distribution *   Y = inv(X)   Information *   y = Y*x      Information state */class Information_state_filter : virtual public Bayes_filter_base{public:	Information_state_filter (std::size_t x_size);	FM::Vec y;				// Information state	FM::SymMatrix Y;		// Information	virtual void init_yY () = 0;	/* Initialise from a information state and information	    Requires y(k|k), Y(k|k)	    Parameters that reference the instance's y and Y members are valid	*/	void init_information (const FM::Vec& y, const FM::SymMatrix& Y);	/* Initialise from a information state and information	    Parameters that reference the instance's y and Y members are valid	*/	virtual void update_yY () = 0;	/* Update filters information state and information	    Updates y(k|k), Y(k|k)	*/};/* * Linearizable filter models - Abstract filtering property *  Linrz == A linear, or gradient Linearized filter * * Predict uses a Linrz_predict_model that maintains a Jacobian matrix Fx and addative noise * NOTE: Functional (non-stochastic) predict is NOT possible as predict requires Fx. * * Observe uses a Linrz_observe_model and a variable size observation (z) * There are two variants for correlated and uncorrelated observation noise * Derived filters supply the init,predict,observe,update functions and determine * the algorithm used to implement the filter. */class Linrz_filter : virtual public Bayes_filter_base{ public:	/* Virtual functions for filter algorithm */	virtual Float predict (Linrz_predict_model& f) = 0;	/* Predict state using a Linrz model	    Requires x(k|k), X(k|k) or internal equivilent	    Returns: Reciprocal condition number of primary matrix used in predict computation (1. if none)	*/	virtual Float observe (Linrz_uncorrelated_observe_model& h, const FM::Vec& z) = 0;	virtual Float observe (Linrz_correlated_observe_model& h, const FM::Vec& z) = 0;	/* Observation z(k) and with (Un)correlated observation noise model	    Requires x(k|k), X(k|k) or internal equivilent	    Returns: Reciprocal condition number of primary matrix used in observe computation (1. if none)	*/};/* * Linearizable Kalman Filter *  Kalman state representation and linearizable models * * Common abstration for many linear filters *  Has a virtual base to represent the common state */class Linrz_kalman_filter : public Linrz_filter, virtual public Kalman_state_filter{protected:	Linrz_kalman_filter() : Kalman_state_filter(0) // define a default constructor	{}};/* * Extended Kalman Filter *  Kalman state representation and linearizable models * * Observe is implemented using an innovation computed from the non-linear part of the * obseve model and linear part of the Linrz_observe_model * * Common abstration for many linear filters *  Has a virtual base to represent the common state */class Extended_kalman_filter : public Linrz_kalman_filter{protected:	Extended_kalman_filter() : Kalman_state_filter(0) // define a default constructor	{}public:	virtual Float observe (Linrz_uncorrelated_observe_model& h, const FM::Vec& z);	virtual Float observe (Linrz_correlated_observe_model& h, const FM::Vec& z);	/* Observation z(k) and with (Un)correlated observation noise model	    Requires x(k|k), X(k|k) or internal equivilent	    Returns: Reciprocal condition number of primary matrix used in observe computation (1. if none)	    Default implementation simple computes innovation for observe_innovation	*/	virtual Float observe_innovation (Linrz_uncorrelated_observe_model& h, const FM::Vec& s) = 0;	virtual Float observe_innovation (Linrz_correlated_observe_model& h, const FM::Vec& s) = 0;	/* Observation innovation s(k) and with (Un)correlated observation noise model	    Requires x(k|k), X(k|k) or internal equivilent	    Returns: Reciprocal condition number of primary matrix used in observe computation (1. if none)	*/};/* * Sample State Filter - Abstract filtering property * * Probability distributions are represted by a finite sampling * * State (x_size) size and its sampling (s_size) are assumed to remain constant. * The state sampling public so they can be directly manipulated. *  init: Should be used if they to be altered *  update: Guarantees that any internal changes made filter are reflected in sampling S. */class Sample_state_filter : virtual public Bayes_filter_base{public:	FM::ColMatrix S;		// state sampleing (x_size,s_size)	Sample_state_filter (std::size_t x_size, std::size_t s_size);	/* Initialise filter and set constant sizes for	    x_size of the state vector	    s_size sample size	    Exceptions:	     bayes_filter_exception is s_size < 1	*/	~Sample_state_filter() = 0;	// ISSUE Provide unambigues distructor incase S is not distructable	/* Virtual functions for filter algorithm */	virtual void init_S () = 0;	/* Initialise from current sampleing	*/	void init_sample (const FM::ColMatrix& initS);	/* Initialise from a sampling	 */	virtual Float update_resample () = 0;	/* Resampling update	    Returns lcond, Smallest normalised likelihood weight, represents conditioning of resampling solution	            lcond == 1. if no resampling performed	            This should by multipled by the number of samples to get the Likelihood function conditioning	 */	std::size_t unique_samples () const;	/* Count number of unique (unequal value) samples in S	    Implementation requires std::sort on sample column references	*/};/* * Sample Filter: Bayes filter using * * Probability distributions are represted by a finite sampling * * The filter is operated by performing a * 	predict, observe * cycle derived from the bayes_filter. observe Likelihoods are merged into a single combined weight. *   update: MUST be used to complete a explict resampling of the particles using merged weights * * Derived filters supply definititions for the abstract functions and determine the algorithm used * to implement the filter. */class Sample_filter : public Likelihood_filter, public Functional_filter, virtual public Sample_state_filter{public:	Sample_filter (std::size_t x_size, std::size_t s_size);	/* Initialise filter and set constant sizes for	    x_size of the state vector	    s_size sample size	    Exceptions:	     bayes_filter_exception is s_size < 1	*/	/* Virtual functions for filter algorithm */	virtual void predict (Functional_predict_model& f);	/* Predict state posterior with functional no noise model	*/	virtual void predict (Sampled_predict_model& f) = 0;	/* Predict state posterior with sampled noise model	*/	virtual void observe (Likelihood_observe_model& h, const FM::Vec& z) = 0;	/* Observation state posterior using likelihood model h at z	*/	virtual void observe_likelihood (const FM::Vec& lw) = 0;	/* Observation fusion directly from likelihood weights	    lw may be smaller then the state sampling. Weights for additional particles are assumed to be 1	*/};}//namespace#endif

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产乱码精品一区二区三区忘忧草 | 日本韩国欧美一区二区三区| 欧美日本一区二区三区四区| 久久亚洲精华国产精华液| 国产精品美女久久久久高潮| 免费成人在线网站| 精品视频在线看| 国产精品每日更新在线播放网址| 免费成人av在线| 色婷婷国产精品综合在线观看| www国产精品av| 午夜精品久久久久久久久久| 99re这里都是精品| 欧美国产综合一区二区| 久久国产精品露脸对白| 欧美日韩黄视频| 一区二区三区在线影院| 成人国产精品免费观看视频| 欧美刺激脚交jootjob| 亚洲mv在线观看| 欧美午夜寂寞影院| 一区二区三区不卡视频| 91猫先生在线| 亚洲欧洲三级电影| 成人黄色777网| 欧美国产日韩一二三区| 精品一区精品二区高清| 欧美日韩不卡一区| 亚洲成人综合网站| 欧美日韩免费观看一区二区三区| 亚洲精品久久久蜜桃| 97精品久久久久中文字幕| 亚洲图片欧美激情| 在线免费观看日本欧美| 亚洲一区在线视频观看| 欧美中文字幕一二三区视频| 一区二区三区日韩欧美| 欧美日韩高清一区| 日本视频中文字幕一区二区三区| 884aa四虎影成人精品一区| 日韩电影免费在线| 日韩久久免费av| 国产一区二区福利视频| 欧美韩国日本综合| 一本大道久久a久久精品综合| 综合av第一页| 欧美日韩免费在线视频| 免费久久精品视频| 国产欧美一区二区精品婷婷| 成人免费的视频| 亚洲精品亚洲人成人网| 欧美精品欧美精品系列| 国内不卡的二区三区中文字幕 | 日本电影亚洲天堂一区| 午夜精品福利久久久| 欧美电影免费观看完整版| 粉嫩嫩av羞羞动漫久久久 | 国产精品美女www爽爽爽| 色综合久久久久综合| 国产不卡视频一区二区三区| 亚洲国产精品国自产拍av| 色婷婷精品大在线视频| 全部av―极品视觉盛宴亚洲| 国产清纯美女被跳蛋高潮一区二区久久w | 精品国产伦一区二区三区观看方式 | 日韩专区一卡二卡| 久久综合成人精品亚洲另类欧美| bt欧美亚洲午夜电影天堂| 亚洲成人免费视| 久久久午夜电影| 91久久精品国产91性色tv| 久久精品99国产精品| 亚洲视频在线一区二区| 日韩欧美一级片| 色视频欧美一区二区三区| 裸体健美xxxx欧美裸体表演| 中文字幕一区av| 精品久久久久久无| 在线观看国产一区二区| 国产精品456露脸| 日韩影院精彩在线| 国产精品国产三级国产有无不卡| 欧美精品日韩一本| 91最新地址在线播放| 精品一区二区日韩| 午夜日韩在线电影| 337p粉嫩大胆色噜噜噜噜亚洲 | 99国产精品国产精品毛片| 美日韩一区二区| 亚洲一区二区三区美女| 国产精品天天看| 久久亚洲二区三区| 日韩视频一区二区在线观看| 日本乱码高清不卡字幕| 国产精品12区| 色综合久久天天| 国产一区二区三区综合| 蜜臀va亚洲va欧美va天堂| 亚洲最色的网站| **欧美大码日韩| 欧美国产视频在线| 国产网红主播福利一区二区| 精品美女被调教视频大全网站| 欧美日韩日日摸| 欧美色区777第一页| 日本道精品一区二区三区| av欧美精品.com| 99精品视频在线观看| 成人免费视频caoporn| 丁香天五香天堂综合| 国产精品88av| www.视频一区| 成人久久18免费网站麻豆| 丰满岳乱妇一区二区三区| 成人小视频在线观看| 成人app网站| 91污在线观看| 91福利在线播放| 欧美性xxxxxx少妇| 欧美日韩国产乱码电影| 777久久久精品| 欧美电影免费观看高清完整版在线 | 天堂一区二区在线| 视频一区视频二区在线观看| 天天操天天色综合| 91伊人久久大香线蕉| 91小视频免费看| 日本精品免费观看高清观看| 欧美日韩一区小说| 日韩一级免费观看| 久久欧美一区二区| 亚洲欧洲国产专区| 亚洲成av人**亚洲成av**| 日本sm残虐另类| 国产成人夜色高潮福利影视| 不卡的av电影在线观看| 欧美亚洲免费在线一区| 日韩免费高清av| 中文字幕在线观看一区| 亚洲二区视频在线| 久久99国产精品免费| 成人av午夜电影| 欧美丝袜自拍制服另类| 欧美xxxxx牲另类人与| 国产拍欧美日韩视频二区| 亚洲精品免费视频| 美女视频一区二区三区| 丰满少妇在线播放bd日韩电影| 欧洲生活片亚洲生活在线观看| 日韩一区二区三区电影| 国产精品二三区| 青青草国产成人av片免费| 成人午夜激情视频| 91精品福利在线一区二区三区| 国产日韩精品久久久| 亚洲午夜一区二区三区| 国产精品原创巨作av| 欧美男人的天堂一二区| 国产精品乱码久久久久久| 国产高清一区日本| 欧美日韩国产一二三| 日本一区二区电影| 日韩av一区二| 99久久夜色精品国产网站| 91麻豆精品国产91久久久资源速度| 久久无码av三级| 香蕉久久夜色精品国产使用方法| 国产九九视频一区二区三区| 欧美在线|欧美| 久久精品在线免费观看| 视频一区视频二区在线观看| 91免费版在线| 国产丝袜美腿一区二区三区| 性欧美大战久久久久久久久| 成人99免费视频| 久久综合九色欧美综合狠狠| 婷婷综合五月天| 欧美在线制服丝袜| 国产精品女上位| 国产一区二区在线观看免费| 精品视频123区在线观看| 中文字幕一区二区日韩精品绯色| 国产综合色在线| 日韩女优av电影在线观看| 香蕉乱码成人久久天堂爱免费| 一本久久a久久精品亚洲| 国产日产欧美一区| 狠狠色狠狠色综合| 欧美成人三级电影在线| 美女网站色91| 欧美一区二区三级| 天堂成人免费av电影一区| 欧美三级视频在线播放| 一区二区三区中文字幕精品精品| 欧美高清精品3d| 日日夜夜精品视频天天综合网| 在线观看欧美黄色| 亚洲第一精品在线| 69成人精品免费视频| 午夜a成v人精品|