亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? bayesian filtering classes.html

?? Bayesian Filtering Classe C++source
?? HTML
?? 第 1 頁 / 共 3 頁
字號:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"><HTML><HEAD>	<META HTTP-EQUIV="CONTENT-TYPE" CONTENT="text/html; charset=iso-8859-15">	<TITLE>Bayesian Filtering Classes</TITLE>	<LINK REL="stylesheet" HREF="Deployment/paper.css" TYPE="text/css"></HEAD><BODY><H1 ALIGN=CENTER><U>Bayesian Filtering Classes</U></H1><H1> Introduction</H1><P ALIGN=LEFT>      Bayesian Filtering is a probabilistic technique for data fusion. The technique combines a concise mathematical formulation of a system with observations of that system. Probabilities are used to represent the state of a system, likelihood functions to represent their relationships. In this form Bayesian inference can be applied and further related probabilities deduced. See <A HREF="http://www.wikipedia.org/">Wikipedia</A> for information on <A HREF="http://www.wikipedia.org/wiki/Probability_theory">Probabilitytheory</A>, <A HREF="http://www.wikipedia.org/wiki/Bayes'_theorem">Bayestheorem</A>, <A HREF="http://www.wikipedia.org/wiki/Bayesian_inference">BayesianInference</A>.</P><P ALIGN=LEFT>For <U>discrete</U> systems the Bayesian formulationresults in a naturally iterative data fusion solution. For <U>dynamic</U>systems there is a class of solutions, discrete <U>filters</U>, that combine observed outputs of the system with the system's dynamic model. An <U>estimator</U> computes a estimate of the systems state with each observationof the system. Linear estimators such as the Kalman Filter are commonly applied.</P><P>Bayes++ is an open source library of C++ classes. Theseclasses represent and implement a wide variety of numericalalgorithms for Bayesian Filtering of discrete systems. The classesprovide tested and consistent numerical methods and the classhierarchy explicitly represents the variety of filtering algorithmsand system model types</P><P>The following documentation summaries the classes available andprovides some general comments on their use. Each class's <B>.hpp</B>file provides a complete interface specification and the numericalform of the solution. Implementation issues are documented in the<B>.cpp</B> files.</P><H2>Numerical Schemes in Bayes++</H2><P>There is a wide range of different numerical techniques forfiltering. For example the Kalman filter (a linear estimator whichcalculates the 2<SUP>nd</SUP> order statistics of the system) isrepresented using either a state vector and a covariance matrix, oralternatively in information form.</P><P>Each numerical technique is a <B><I>Scheme</I></B>, and eachScheme is implemented as a class. Each scheme implements thealgorithms required by a filter's particular numerical form. Theschemes provide a common interface that allows:</P><DL>	<DD>i. initialization and update of the state, and</DD>	<DD>ii. predict and observe functions with parameterized models</DD></DL><P>Each Scheme has both advantages and disadvantages. The numericalcomplexity and efficiency varies, as does the numerical stability.The table below lists all Schemes together with any requirement onthe representation associated with the algorithm.</P><TABLE WIDTH=725 BORDER=5 CELLPADDING=0 CELLSPACING=0>	<TR VALIGN=TOP>		<TD WIDTH=30%>			<P><B><FONT FACE="Verdana" SIZE=5>Scheme</FONT></B>		</TD>		<TD WIDTH=43%>			<P><B><FONT FACE="Verdana" SIZE=4>Formulation and<BR>Algorithm			used</FONT></B>		</TD>		<TD WIDTH=25%>			<P><B><FONT FACE="Verdana" SIZE=4>Representation			Requirements</FONT></B>		</TD>	</TR>	<TR VALIGN=TOP>		<TD WIDTH=30%>			<H4>Covariance_scheme</H4>			<P>Extended Kalman Filter (EKF)</P>			<P><A HREF="#References">See Reference[6]</A></TD>		<TD WIDTH=43%>			<P>Classic 2nd order filter with state mean and covariance			representation. Non-linear models require a gradient linearisation			(Jacobian). Uses the common innovation update formulation.</TD>		<TD WIDTH=25%>			<P>Innovation covariance invertible</TD>	</TR>	<TR VALIGN=TOP>		<TD WIDTH=30%>			<H4>Unscented_scheme</H4>			<P>Kalman filter using unscented non-linear approximations</P>			<P><A HREF="#References">See Reference[1]</A></TD>		<TD WIDTH=43%>			<P>Unscented non-linear transformations replace the Jacobians used			in the EKF- reducing linearisation errors in all cases.</TD>		<TD WIDTH=25%>			<P>Innovation covariance invertible</TD>	</TR>	<TR VALIGN=TOP>		<TD WIDTH=30%>			<H4>Iterated_covariance_scheme</H4>			<P>Modified EKF update</P>			<P><A HREF="#References">See Reference[6]</A></TD>		<TD WIDTH=43%>			<P>Kalman filter for highly non-linear observation models.			Observation update is iterated using an Euler approximation.</TD>		<TD WIDTH=25%>			<P>State, observation and innovation covariance invertible</TD>	</TR>	<TR VALIGN=TOP>		<TD WIDTH=30%>			<H4>Information_scheme</H4>			<P>Extended Information Filter (EIF)</P>			<P><A HREF="#References">See Reference[7]</A></TD>		<TD WIDTH=43%>			<P>Information (inverse covariance) filter.</P>			<P>Invertible linear model allows direct information form			prediction.<BR>Non-linear prediction requires conversion back to			state representation.<BR>Observe with modified innovation			formulation equivalent to EKF.</TD>		<TD WIDTH=25%>			<P>State, observation and innovation covariance invertible</TD>	</TR>	<TR VALIGN=TOP>		<TD WIDTH=30%>			<H4>Information_root_scheme</H4>			<P>Square root information filter (SRIF)</P>			<P><A HREF="#References">See Reference[4]</A></TD>		<TD WIDTH=43%>			<P>Numerically stable solution using factorization of inverse			covariance as R'R</TD>		<TD WIDTH=25%>			<P>Invertible prediction model. Prediction and observation			covariance invertible</TD>	</TR>	<TR VALIGN=TOP>		<TD WIDTH=30%>			<H4>UD_scheme</H4>			<P>Square root covariance filter</P>			<P><A HREF="#References">See Reference[2]</A></TD>		<TD WIDTH=43%>			<P>Numerically stable solution using UdU' factorization of			covariance.</TD>		<TD WIDTH=25%>			<P>Innovation covariance invertible. Linearized observation			requires uncorrelated noise</TD>	</TR>	<TR VALIGN=TOP>		<TD>			<P><B>CI_scheme<BR><BR></B>Covariance intersect filter			</P>			<P><A HREF="#References">See Reference[8]</A></TD>		<TD>			<P>CI is interesting as it provides a weaker but more robust			fusion then traditional covariance based method such as the Kalman			filter. It estimates state and an upper bound of what its			covariance could be.</TD>		<TD>			<P>No solution if covariances don't intersect.</TD>	</TR>	<TR VALIGN=TOP>		<TD WIDTH=30%>			<H4>SIR_scheme</H4>			<P>Sequential Importance Re-sampling filter</P>			<P><A HREF="#References">See Reference[5]</A></TD>		<TD WIDTH=43%>			<P>A bootstrap representation of the state distribution &ndash; no			linear or Gaussian assumptions required.</P>			<P>Uncorrelated linear roughening of samples.</TD>		<TD WIDTH=25%>			<P>Bootstrap samples collapse to a degenerate from with fewer			samples then states.</TD>	</TR>	<TR VALIGN=TOP>		<TD WIDTH=30%>			<H4>SIR_kalman_scheme</H4>			<P>Sequential Importance Re-sampling filter</TD>		<TD WIDTH=43%>			<P>A bootstrap representation of the state distribution &ndash; no			linear or Gaussian assumptions required.</P>			<P>Additional computes state mean and covariance. Correlated			linear roughening of samples.</TD>		<TD WIDTH=25%>			As above. Correlation non-computable from degenerate samples.</TD>	</TR></TABLE><H1>Three Examples</H1><H2>Simple Example (Initialize &ndash; Predict &ndash; Observe)</H2><P>This is very simple example for those who have never used theBayesian Filtering Classes before. The example shows how two classesare built. The first is the prediction model, the second theobservation model. In this example they represent a simple linearproblem with only one state variable and constant model noises.</P><P>The example then constructs a filter. The <B>Unscented</B> filterscheme is chosen to illustrate how this works, even on a simplelinear problem. After construction the filter is given the problem&rsquo;sinitial conditions. A prediction using the predefine prediction modelis then made. This prediction is then fused with an externalobservation given by the example and the defined observation model.At each stage, the filter&rsquo;s state estimate and varianceestimate are printed.</P><H2>Position and Velocity</H2><P>This example solves a simple position and velocity observationproblem using the Bayesian filter classes. The system has two states,position and velocity, and a noisy position observation is simulated.Two variants:</P><DL>		<DD>1) direct filter</DD>		<DD>2) indirect filter where the filter is preformed on error		and state is estimated indirectly</DD></DL><P>are demonstrated using a specified numerical scheme. The exampleshows how to build <U>linear</U> prediction and observation modelsand to cycle the filter to produce state estimates.</P><H2>Quadratic Calibration</H2><P>This example implements a &ldquo;Quadratic Calibration&rdquo;filter. The observer is trying to estimate the state of a system aswell as the systems scale factor and bias. A simple system issimulated where the state is affected by a known perturbation.</P><P>The example shows how to build <U>linearized</U> prediction andobservation model and cycle a filter to produce state estimates.</P><H1>Dual Abstraction</H1><P>The aim of Bayes++ is to provide a powerful and extensiblestructure for Bayesian filtering. This is achieved by hierarchicalcomposition of related objects. In C++ these are represented by ahierarchy of polymorphic classes. Numerical Schemes are grouped bytheir state representation. The Schemes themselves provided thefiltering operations on these representations.</P><P>To complete a filter, an associated prediction and observationmodel must also be specified. These model classes parameterize thefiltering operations. The users responsibility is to chose a modeltype and provide the numerical algorithm for that model. Again modelclasses composed using a hierarchy of polymorphic abstract classes torepresents the structure of each model type.</P><P>This <EM>dual abstraction</EM>, separating numerical schemes frommodel structure, provides a great deal of flexibility. In particularit allows a well-specified model to be used with a variety ofnumerical schemes.</P><H2>Filter Hierarchy</H2><P>The table below lists a few of the key abstract filter classesupon which filter Schemes are build. The C++ class hierarchydocumentation gives the complete structure.</P><DL>	<DD>				<TABLE WIDTH=566 BORDER=3 CELLPADDING=2 CELLSPACING=0>					<COL WIDTH=210>					<COL WIDTH=342>					<TR VALIGN=TOP>						<TD WIDTH=210>							<P><STRONG>Bayes_filter</STRONG>						</TD>						<TD WIDTH=342>							<P>Base class for everything<BR>(contains no data)						</TD>					</TR>					<TR VALIGN=TOP>						<TD WIDTH=210>							<P><STRONG>Likelihood_filter</STRONG></TD>

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
|精品福利一区二区三区| 色哟哟在线观看一区二区三区| 亚洲综合男人的天堂| 亚洲精品日韩专区silk| 亚洲日本一区二区| 亚洲欧美日韩国产手机在线| 亚洲三级在线看| 亚洲一二三级电影| 奇米精品一区二区三区在线观看| 日本不卡123| 国产精品亚洲专一区二区三区| 国产呦精品一区二区三区网站 | 在线精品视频一区二区| 91麻豆精东视频| 欧美三级日韩在线| 日韩久久久久久| 国产蜜臀av在线一区二区三区| 国产精品每日更新| 亚洲一区二区中文在线| 免费一级片91| 成人午夜精品一区二区三区| 色欧美乱欧美15图片| 91精品国产综合久久精品麻豆 | 国产欧美一区二区三区沐欲| 国产精品久线观看视频| 亚洲成人三级小说| 韩国av一区二区三区四区| 99热这里都是精品| 91.xcao| 国产日韩欧美不卡在线| 亚洲精品美国一| 美女在线视频一区| av在线一区二区三区| 欧美日韩一区三区四区| 久久久精品日韩欧美| 亚洲影视资源网| 国产一区二区三区av电影| 日本韩国精品一区二区在线观看| 日韩写真欧美这视频| 亚洲天堂免费在线观看视频| 日韩高清不卡在线| 91在线播放网址| 久久久综合精品| 午夜精品成人在线| 97久久精品人人澡人人爽| 日韩三级av在线播放| 一区二区在线观看av| 国产福利不卡视频| 欧美精品三级在线观看| 亚洲欧美日韩国产综合| 成人手机电影网| 日韩一区二区三区电影在线观看| 一区二区三区中文免费| 成人成人成人在线视频| 精品日韩在线一区| 视频在线观看91| 日本精品一区二区三区高清 | 精品国产髙清在线看国产毛片| 洋洋av久久久久久久一区| 成人性视频网站| 国产欧美综合在线| 韩国v欧美v日本v亚洲v| 精品黑人一区二区三区久久| 丝袜美腿亚洲综合| 欧美日韩在线综合| 亚洲一区二区视频在线| 欧美色老头old∨ideo| 亚洲一区二区av电影| 色94色欧美sute亚洲线路一ni| 18欧美亚洲精品| 91天堂素人约啪| 亚洲欧美一区二区三区国产精品| 丁香网亚洲国际| 国产欧美日韩在线视频| 国产精品一品二品| 国产欧美日韩在线| 99视频精品在线| 亚洲自拍另类综合| 91精品国产综合久久香蕉的特点| 日本欧美加勒比视频| 欧美成人艳星乳罩| 国产精品一二三四| 日韩毛片视频在线看| 色综合天天综合在线视频| 亚洲另类在线视频| 在线看日本不卡| 日本不卡一二三区黄网| 久久精品一区二区三区不卡| eeuss影院一区二区三区| 一区二区三区在线高清| 欧美一区二区三区四区视频| 久色婷婷小香蕉久久| 久久久不卡网国产精品一区| 国产91丝袜在线18| 亚洲自拍偷拍网站| 精品少妇一区二区三区| 91免费国产在线| 日韩不卡一二三区| 国产亚洲污的网站| 在线中文字幕不卡| 久久成人18免费观看| 中文文精品字幕一区二区| 色综合中文字幕国产| 一区二区三区不卡在线观看 | 精品第一国产综合精品aⅴ| 国产91精品在线观看| 亚洲国产精品一区二区尤物区| 日韩欧美国产电影| 91丨九色丨蝌蚪丨老版| 九色综合国产一区二区三区| 亚洲人成精品久久久久久| 7777精品伊人久久久大香线蕉超级流畅 | 中文字幕在线一区二区三区| 欧美人狂配大交3d怪物一区| 国产成人亚洲精品青草天美| 亚洲午夜免费视频| 欧美国产乱子伦 | 国产一区二区三区久久久| 亚洲综合无码一区二区| 国产日韩欧美一区二区三区乱码 | 亚洲女同一区二区| 久久色.com| 欧美一区二区黄| 91福利在线导航| 粉嫩13p一区二区三区| 日一区二区三区| 亚洲美女屁股眼交| 欧美激情艳妇裸体舞| 欧美一级欧美三级| 欧美色成人综合| 99久久综合99久久综合网站| 国产最新精品精品你懂的| 偷拍日韩校园综合在线| 亚洲精品美国一| 亚洲欧美中日韩| 国产欧美综合在线| 久久精品亚洲精品国产欧美| 欧美一区二区二区| 欧美日韩大陆一区二区| 欧美私模裸体表演在线观看| 97久久精品人人澡人人爽| 国产91综合一区在线观看| 国产精品99久久久久久有的能看| 免费美女久久99| 日本女优在线视频一区二区| 五月天欧美精品| 天天色综合成人网| 五月婷婷综合网| 日韩在线卡一卡二| 日韩高清一区二区| 久久不见久久见免费视频1| 奇米888四色在线精品| 麻豆91精品视频| 蜜臀精品久久久久久蜜臀| 蜜桃av一区二区在线观看| 免费亚洲电影在线| 极品销魂美女一区二区三区| 国产美女在线精品| 懂色av一区二区三区蜜臀| 成+人+亚洲+综合天堂| 97成人超碰视| 欧美性大战久久久久久久蜜臀 | 国产午夜精品福利| 国产精品久久久久一区| 亚洲人成精品久久久久久| 亚洲一区二区三区美女| 日韩高清一区二区| 国产成人在线观看免费网站| voyeur盗摄精品| 欧美日韩日日夜夜| 精品sm捆绑视频| 亚洲欧洲成人精品av97| 亚洲成人av中文| 国内成人免费视频| www.av亚洲| 欧美一区二区福利视频| 国产日韩欧美麻豆| 亚洲mv大片欧洲mv大片精品| 美女视频网站久久| 99久久精品国产麻豆演员表| 欧美日韩视频专区在线播放| 欧美精品一区二区三区很污很色的| 国产女人18水真多18精品一级做| 一区二区三区精品视频| 看电视剧不卡顿的网站| av日韩在线网站| 欧美一级黄色片| 中文字幕在线不卡一区| 奇米色一区二区| 色狠狠综合天天综合综合| 精品88久久久久88久久久| 亚洲综合色丁香婷婷六月图片| 激情综合色播五月| 日本黄色一区二区| 欧美国产综合色视频| 日韩在线卡一卡二| 一本大道久久a久久精品综合| 日韩久久精品一区| 亚洲国产欧美日韩另类综合| 国产成人aaa|