?? cmp_learning_dbn.m
字號:
function [time, CPD, LL, cases] = cmp_learning_dbn(bnet, engine, T, varargin)% CMP_LEARNING_DBN Compare a bunch of inference engines by learning a DBN% function [time, CPD, LL, cases] = cmp_learning_dbn(bnet, engine, exact, T, ncases, max_iter)%% engine{i} is the i'th inference engine.% time(e) = elapsed time for doing inference with engine e% CPD{e,c} is the learned CPD for eclass c in engine e% LL{e} is the learning curve for engine e% cases{i} is the i'th training case%% The list below gives optional arguments [default value in brackets].%% exact - specifies which engines do exact inference [ 1:length(engine) ]% check_ll - 1 means we check that the log-likelihoods are correct [1]% ncases - num. random training cases [2]% max_iter - max. num EM iterations [2]% set default paramsexact = 1:length(engine);check_ll = 1;ncases = 2;max_iter = 2;args = varargin;nargs = length(args);for i=1:2:nargs switch args{i}, case 'exact', exact = args{i+1}; case 'check_ll', check_ll = args{i+1}; case 'ncases', ncases = args{i+1}; case 'max_iter', max_iter = args{i+1}; otherwise, error(['unrecognized argument ' args{i}]) endendE = length(engine);ss = length(bnet.intra);onodes = bnet.observed;cases = cell(1, ncases);for i=1:ncases ev = sample_dbn(bnet, 'length', T); cases{i} = cell(ss,T); cases{i}(onodes,:) = ev(onodes, :);endLL = cell(1,E);time = zeros(1,E);for i=1:E tic [bnet2{i}, LL{i}] = learn_params_dbn_em(engine{i}, cases, 'max_iter', max_iter); time(i) = toc; fprintf('engine %d took %6.4f seconds\n', i, time(i));endref = exact(1); % referencecmp = mysetdiff(exact, ref);if check_ll for i=cmp(:)' if ~approxeq(LL{ref}, LL{i}) error(['engine ' num2str(i) ' has wrong ll']) end endendnCPDs = length(bnet.CPD);CPD = cell(E, nCPDs);tabular = zeros(1, nCPDs);for i=1:E temp = bnet2{i}; for c=1:nCPDs tabular(c) = isa(temp.CPD{c}, 'tabular_CPD'); CPD{i,c} = struct(temp.CPD{c}); endendfor i=cmp(:)' for c=1:nCPDs if tabular(c) assert(approxeq(CPD{i,c}.CPT, CPD{ref,c}.CPT)); else assert(approxeq(CPD{i,c}.mean, CPD{ref,c}.mean)); assert(approxeq(CPD{i,c}.cov, CPD{ref,c}.cov)); assert(approxeq(CPD{i,c}.weights, CPD{ref,c}.weights)); end endend
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -