?? maximize_params.m
字號:
function CPD = maximize_params(CPD, temp)% MAXIMIZE_PARAMS Set the params of a tabular node to their ML/MAP values.% CPD = maximize_params(CPD, temp)if ~adjustable_CPD(CPD), return; end%assert(approxeq(sum(CPD.counts(:)), CPD.nsamples)); % false!switch CPD.prior_type case 'none', counts = reshape(CPD.counts, size(CPD.CPT)); CPD.CPT = mk_stochastic(counts); case 'dirichlet', counts = reshape(CPD.counts, size(CPD.CPT)); CPD.CPT = mk_stochastic(counts + CPD.dirichlet); % case 'entropic',% % For an HMM,% % CPT(i,j) = pr(X(t)=j | X(t-1)=i) = transprob(i,j)% % counts(i,j) = E #(X(t-1)=i, X(t)=j) = exp_num_trans(i,j)% Z = 1-temp;% fam_sz = CPD.sizes;% psz = prod(fam_sz(1:end-1));% ssz = fam_sz(end);% counts = reshape(CPD.counts, psz, ssz);% CPT = zeros(psz, ssz);% for i=CPD.entropic_pcases(:)'% [CPT(i,:), logpost] = entropic_map_estimate(counts(i,:), Z);% end% non_entropic_pcases = mysetdiff(1:psz, CPD.entropic_pcases);% for i=non_entropic_pcases(:)'% CPT(i,:) = mk_stochastic(counts(i,:));% end% %for i=1:psz% % [CPT(i,:), logpost] = entropic_map(counts(i,:), Z);% %end% if CPD.trim & (temp < 2) % at high temps, we would trim everything!% % grad(j) = d log lik / d theta(i ->j)% % CPT(i,j) = 0 => counts(i,j) = 0% % so we can safely replace 0s by 1s in the denominator% denom = CPT(i,:) + (CPT(i,:)==0);% grad = counts(i,:) ./ denom;% trim = find(CPT(i,:) <= exp(-(1/Z)*grad)); % eqn 32% if ~isempty(trim)% CPT(i,trim) = 0;% if all(CPD.trimmed_trans(i,trim)==0) % trimming for 1st time% disp(['trimming CPT(' num2str(i) ',' num2str(trim) ')']) % end% CPD.trimmed_trans(i,trim) = 1;% end% end% CPD.CPT = myreshape(CPT, CPD.sizes);end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -