?? cddproj.c
字號:
/* cddproj.c: Polyhedral Projections in cddlib written by Komei Fukuda, fukuda@cs.mcgill.ca Version 0.94, Aug. 4, 2005*//* cddlib : C-library of the double description method for computing all vertices and extreme rays of the polyhedron P= {x : b - A x >= 0}. Please read COPYING (GNU General Public Licence) and the manual cddlibman.tex for detail.*/#include "setoper.h" /* set operation library header (Ver. June 1, 2000 or later) */#include "cdd.h"#include <stdio.h>#include <stdlib.h>#include <time.h>#include <math.h>#include <string.h>dd_MatrixPtr dd_BlockElimination(dd_MatrixPtr M, dd_colset delset, dd_ErrorType *error)/* Eliminate the variables (columns) delset by the Block Elimination with dd_DoubleDescription algorithm. Given (where y is to be eliminated): c1 + A1 x + B1 y >= 0 c2 + A2 x + B2 y = 0 1. First construct the dual system: z1^T B1 + z2^T B2 = 0, z1 >= 0. 2. Compute the generators of the dual. 3. Then take the linear combination of the original system with each generator. 4. Remove redundant inequalies.*/{ dd_MatrixPtr Mdual=NULL, Mproj=NULL, Gdual=NULL; dd_rowrange i,h,m,mproj,mdual,linsize; dd_colrange j,k,d,dproj,ddual,delsize; dd_colindex delindex; mytype temp,prod; dd_PolyhedraPtr dualpoly; dd_ErrorType err=dd_NoError; dd_boolean localdebug=dd_FALSE; *error=dd_NoError; m= M->rowsize; d= M->colsize; delindex=(long*)calloc(d+1,sizeof(long)); dd_init(temp); dd_init(prod); k=0; delsize=0; for (j=1; j<=d; j++){ if (set_member(j, delset)){ k++; delsize++; delindex[k]=j; /* stores the kth deletion column index */ } } if (localdebug) dd_WriteMatrix(stdout, M); linsize=set_card(M->linset); ddual=m+1; mdual=delsize + m - linsize; /* #equalitions + dimension of z1 */ /* setup the dual matrix */ Mdual=dd_CreateMatrix(mdual, ddual); Mdual->representation=dd_Inequality; for (i = 1; i <= delsize; i++){ set_addelem(Mdual->linset,i); /* equality */ for (j = 1; j <= m; j++) { dd_set(Mdual->matrix[i-1][j], M->matrix[j-1][delindex[i]-1]); } } k=0; for (i = 1; i <= m; i++){ if (!set_member(i, M->linset)){ /* set nonnegativity for the dual variable associated with each non-linearity inequality. */ k++; dd_set(Mdual->matrix[delsize+k-1][i], dd_one); } } /* 2. Compute the generators of the dual system. */ dualpoly=dd_DDMatrix2Poly(Mdual, &err); Gdual=dd_CopyGenerators(dualpoly); /* 3. Take the linear combination of the original system with each generator. */ dproj=d-delsize; mproj=Gdual->rowsize; Mproj=dd_CreateMatrix(mproj, dproj); Mproj->representation=dd_Inequality; set_copy(Mproj->linset, Gdual->linset); for (i=1; i<=mproj; i++){ k=0; for (j=1; j<=d; j++){ if (!set_member(j, delset)){ k++; /* new index of the variable x_j */ dd_set(prod, dd_purezero); for (h = 1; h <= m; h++){ dd_mul(temp,M->matrix[h-1][j-1],Gdual->matrix[i-1][h]); dd_add(prod,prod,temp); } dd_set(Mproj->matrix[i-1][k-1],prod); } } } if (localdebug) printf("Size of the projection system: %ld x %ld\n", mproj, dproj); dd_FreePolyhedra(dualpoly); free(delindex); dd_clear(temp); dd_clear(prod); dd_FreeMatrix(Mdual); dd_FreeMatrix(Gdual); return Mproj;}dd_MatrixPtr dd_FourierElimination(dd_MatrixPtr M,dd_ErrorType *error)/* Eliminate the last variable (column) from the given H-matrix using the standard Fourier Elimination. */{ dd_MatrixPtr Mnew=NULL; dd_rowrange i,inew,ip,in,iz,m,mpos=0,mneg=0,mzero=0,mnew; dd_colrange j,d,dnew; dd_rowindex posrowindex, negrowindex,zerorowindex; mytype temp1,temp2; dd_boolean localdebug=dd_FALSE; *error=dd_NoError; m= M->rowsize; d= M->colsize; if (d<=1){ *error=dd_ColIndexOutOfRange; if (localdebug) { printf("The number of column is too small: %ld for Fourier's Elimination.\n",d); } goto _L99; } if (M->representation==dd_Generator){ *error=dd_NotAvailForV; if (localdebug) { printf("Fourier's Elimination cannot be applied to a V-polyhedron.\n"); } goto _L99; } if (set_card(M->linset)>0){ *error=dd_CannotHandleLinearity; if (localdebug) { printf("The Fourier Elimination function does not handle equality in this version.\n"); } goto _L99; } /* Create temporary spaces to be removed at the end of this function */ posrowindex=(long*)calloc(m+1,sizeof(long)); negrowindex=(long*)calloc(m+1,sizeof(long)); zerorowindex=(long*)calloc(m+1,sizeof(long)); dd_init(temp1); dd_init(temp2); for (i = 1; i <= m; i++) { if (dd_Positive(M->matrix[i-1][d-1])){ mpos++; posrowindex[mpos]=i; } else if (dd_Negative(M->matrix[i-1][d-1])) { mneg++; negrowindex[mneg]=i; } else { mzero++; zerorowindex[mzero]=i; } } /*of i*/ if (localdebug) { dd_WriteMatrix(stdout, M); printf("No of (+ - 0) rows = (%ld, %ld, %ld)\n", mpos,mneg, mzero); } /* The present code generates so many redundant inequalities and thus is quite useless, except for very small examples */ mnew=mzero+mpos*mneg; /* the total number of rows after elimination */ dnew=d-1; Mnew=dd_CreateMatrix(mnew, dnew); dd_CopyArow(Mnew->rowvec, M->rowvec, dnew);/* set_copy(Mnew->linset,M->linset); */ Mnew->numbtype=M->numbtype; Mnew->representation=M->representation; Mnew->objective=M->objective; /* Copy the inequalities independent of x_d to the top of the new matrix. */ for (iz = 1; iz <= mzero; iz++){ for (j = 1; j <= dnew; j++) { dd_set(Mnew->matrix[iz-1][j-1], M->matrix[zerorowindex[iz]-1][j-1]); } } /* Create the new inequalities by combining x_d positive and negative ones. */ inew=mzero; /* the index of the last x_d zero inequality */ for (ip = 1; ip <= mpos; ip++){ for (in = 1; in <= mneg; in++){ inew++; dd_neg(temp1, M->matrix[negrowindex[in]-1][d-1]); for (j = 1; j <= dnew; j++) { dd_LinearComb(temp2,M->matrix[posrowindex[ip]-1][j-1],temp1,\ M->matrix[negrowindex[in]-1][j-1],\ M->matrix[posrowindex[ip]-1][d-1]); dd_set(Mnew->matrix[inew-1][j-1],temp2); } dd_Normalize(dnew,Mnew->matrix[inew-1]); } } free(posrowindex); free(negrowindex); free(zerorowindex); dd_clear(temp1); dd_clear(temp2); _L99: return Mnew;}/* end of cddproj.c */
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -