亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? fs_lin_map.m

?? CheckMate is a MATLAB-based tool for modeling, simulating and investigating properties of hybrid dyn
?? M
字號(hào):
function [MAPPING,null_event,time_limit] = fs_lin_map(A,b,X0,INV)

% Compute the `mapping set` from an initial continuous set to the boundary
% of the given `invariant` set under the given `linear` (affine) continuous
% dynamics using flow pipe approximations with a fixed time step.
%
% Syntax:
%   "[MAPPING,null_event,time_limit] = fs_lin_map(A,b,X0,INV)"
%
% Description:
%   The inputs are 
%
%   * "A": the system matrix
%
%   * "b": constant input vector for the affine dynamics
%
%   * "X0": a "linearcon" object represeting the initial set
%
%   * "INV": a "linearcon" object represeting the invariant set
%
%   The outputs are
%
%   * "MAPPING": a one-dimensional cell array with the same number of elements
%     as the number of faces of "INV". Each element "MAPPING{i}" is a cell
%     array of polytopes constituting the mapping set on the "i"-th face of
%     "INV".
%
%   * "null_event": a boolean flag indicating that the flow pipe computation
%     was terminated because it can be concluded that the subsequent flow
%     pipe segments will remain inside "INV" forever.
%
%   * "time_limit": a boolean flag indicating that the flow pipe computation
%     was terminated because the time limit "max_time" was exceeded.
%
% Implementation:
%   The `mapping set` is the subset of the faces of the invariant "INV" that
%   can be reached from the initial continuous state set "X0" under the
%   affine continuous dynamics. The mapping set is computed by intersecting
%   the flow pipe segment computed in each time step with the boundary of
%   "INV". Terminate the computation when one or more of these criteria
%   are met.
%
%   * `The flow pipe segment lies completely outside of "INV"`. In this,
%     case all trajectories of "X0" must have gone past the "INV"
%     boundary.
%
%   * `The matrix "A" is stable and the flow pipe segment lies completely
%     inside of the Lyapunov stability ellipsoid contained inside "INV"`. In
%     this case, all subsequent flow pipe segments will remain inside
%     "INV". Also set the "null_event" flag to 1 when this criterion is
%     met.
%
%   * `The time interval for the current flow pipe segment has exceeded the
%     time limit "GLOBAL_APPROX_PARAM.max_time"`. In this case, we may not
%     have a truly conservative approximation of the mapping set because we
%     do not know whether the subsequent flow pipe segments can reach the
%     invariant boundary or not. Set the "time_limit" flag to 1 to indicate
%     this case.
% 
%   The Lyapunov stability ellipsoid is computed in the function "lyapell()"
%   in this m-file. See the comments in the function for more detail.
%
% See Also:
%   psim_lin,seg_approx_lin,step_response,stretch_func_lin,linearcon,
%   transform

global GLOBAL_APPROX_PARAM

% Get approximation parameters from the global variables.

% Time step for the flow pipe computations.
T = GLOBAL_APPROX_PARAM.T;

% Maximum time limit for the flow pipe computations.
max_time = GLOBAL_APPROX_PARAM.max_time;

% If A is invertible, precompute inverse of A.
if rank(A) == size(A,1)
  Ainv = inv(A);
else
  Ainv = [];
end
eAT = expm(A*T);
displacement = step_response(A,Ainv,b,T);

% Default flag values for the equilibrium and time limit checking.
check_equilibrium = 0;
check_time_limit = 1;

% Determine the real part of the eigenvalues of A.
real_eig_A = real(eig(A));

% If A is stable and the equilibrium point is enclosed in INV, then turn
% on the equilbrium check.
if all(real_eig_A < 0)

  % If A is stable, we can turn off the time limit checking flag and
  % avoid having non-conservative flow pipe approximation because:
  % (i)  If the equilibrium point is inside INV, then the flowpipe segment
  %      will eventually be contained in the stability ellipsoid enclosed by
  %      INV. When this happens, we can stop the computation and conclude
  %      that the flow pipe will remain in INV forever.
  % (ii) If the equilibrium point is outside INV, then the flowpipe segment
  %      will eventually exit INV completely, in which case the
  %      computation will stop.
  check_time_limit = 0;

  % Next we check if the equilibrium point is contained inside INV.
  [CE,dE,CI,dI] = linearcon_data(INV);
  if ~(isempty(CE) & isempty(dE))
    INV
    error('Invariant polytope must be full dimensional.')
  end

  % The equilibrium point is xe = -Ainv*b.
  xe = -Ainv*b;

  % Translate the invariant from the equilibrium point to the origin
  dIhat = dI-CI*xe;

  % Check equilibrium point enclosure.
  if all(dIhat > 0)
    % If equilibrium point is inside INV, find the largest stability
    % ellipsoid x'*Q*x = gamma contained in the translated INV and turn
    % on the equilibrium checking flag.
    [Q,gamma] = lyapell(A,CI,dIhat);
    check_equilibrium = 1;
  end
  
elseif any(real_eig_A > 0)
  
  % If A is unstable, we can turn off the time limit checking flag and
  % avoid having non-conservative flow pipe approximation because the
  % flow pipe segment will eventually exit INV completely.
  check_time_limit = 0;
  
end

if check_equilibrium
  fprintf(1,' - equilibrium point found\n')
end
if check_time_limit
  fprintf(1,' - time limit will be enforced\n')
end

% Initialize the output cell array for the computed mappings.
N = number_of_faces(INV);
MAPPING = cell(N,1);

% Now perform flow pipe computations until one of the stopping criteria
% is met.
fprintf(1,'Computing flow pipe segments:')

% Counter for the number of flow pipe segments computed.
counter = 0;

% Flag indicating whether equilibrium stopping criteria has been met.
equilibrium = 0;

% Flag indicating whether time limit stopping criteria has been met.
time_limit = 0;

first = 1; t_total = 0; stop = 0;
while ~stop
  if first
    % Compute the first flow pipe segment
    V0 = vertices(X0);
    Pk = seg_approx_lin(A,Ainv,b,X0,V0,T);
    Vk = transform(V0,eAT,displacement);
    Xk = transform(X0,eAT,displacement);
    first = 0;
  else
    % Transform the previous flow pipe segment to get the current segment
    Pk = transform(Pk,eAT,displacement);
    Vk = transform(Vk,eAT,displacement);
    Xk = transform(Xk,eAT,displacement);
  end

  % Intersect the current flow pipe segment with each face of INV and
  % append the result to the mapping cell array.
  mapk = invariant_boundary_intersect(INV,Pk,A,b);
  for l = 1:length(mapk)
    if ~isempty(mapk{l})
      new = length(MAPPING{l})+1;
      MAPPING{l}{new} = mapk{l};
    end
  end

  % Increment the flow pipe segment counter. Print a dot for each segment
  % computed. Print a carriage return for every 60 flow pipe segments
  % computed.
  counter = counter + 1;
  if (rem(counter-1,60) == 0)
    fprintf(1,'\n')
  end
  fprintf(1,'.')
  
  partially_inside = isfeasible(Xk,INV);
  
  if check_equilibrium
    % Translate the vertices of the reachable set Xk at time tk from xe
    % to the origin.
    Vk_hat = transform(Vk,eye(size(A)),-xe);
    % Then check if Vk_hat is in the stability ellipsoid centered at the
    % origin.
    equilibrium = is_in_stability_ellipsoid(Vk_hat,Q,gamma);
  end
  
  if check_time_limit
    t_total = t_total + T;
    time_limit = (t_total > max_time);
  end
  
  stop = ~partially_inside | equilibrium | time_limit;
end
fprintf(1,'\n')

null_event = equilibrium;

return

% =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

function map = invariant_boundary_intersect(INV,P,A,b)

% Compute the intersection between the boundary of the invariant and the
% polytope P. It is assumed that the invariant is of full dimensions, no
% inequality constraints.

% map is a cell array of the same size as the number of faces of INV.
% map{i} is the intersection of P with the ith face of INV.

N = number_of_faces(INV);
map = cell(N,1);

% Compute the intersection on each face of INV
for m = 1:N
  temp = poly_face(INV,m);
  [CE,dE,CI,dI] = linearcon_data(temp);
  temp = temp & P;
  if ~isempty(temp)      con_out = linearcon([],[],-CE*A,CE*b);
      temp = temp & con_out;
      if ~isempty(temp)
          map{m} = temp;
      end
  endend
return

% =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

function result = is_in_stability_ellipsoid(V,Q,gamma)

% Check if the given polytope P defined by a set of vertices V is contained
% in the ellipsoid x'*Q*x <= gamma. This done by solving the quadratic
% program
%
%    max    x'*Q*x 
%  x in P 
%
% and check if the maximum is <= gamma. Solve the maximization problem by
% searching over the vertices V of P, since the global maximum of a convex
% function over a polytope occurs at some vertex of the polytope.

result = 1;
for k = 1:length(V)
  if (V(k)'*Q*V(k) > gamma)
    result = 0;
    break;
  end
end

% =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

function [P,gamma] = lyapell(A,C,d)

% Given a STABLE matrix A and an invariant polytope Cx <= d which strictly
% encloses the origin, find the largest Lyapunov ellipsoid x'*P*x = gamma
% contained in Cx <= d.

% If A is STABLE then, we must be able to solve the Lyapunov equation
%
% A'*P + P*A = -I

P = lyap(A',eye(size(A)));

% To fit the largest ellipsoid x'*P*x, inside the polytope CI*x <= dI which
% stictly encloses the origin, we do the following.
% The largest ellipsoid that could fit inside the kth face of the polytope
% can be found by solving the optimization problem
% 
% min        fk(x) = x'*P*x 
% subject to ck'*x = dk
%
% By writing the Lagrangian L(x,lambda) = x'*P*x + lambda(ck'*x-dk), and
% differentiate with respect to x and lambda, we have that the optimal
% solution occurs at
%
% x = -(lambda/2)*P^{-1}*ck        .............. (1)
%
% From the constraint ck'*x = dk, we have that
%
% dk = -(lambda/2)*ck'*P^{-1}*ck   .............. (2)
%
% Solving (2) for lambda and substituting (1) into the objective
% function, we have that the optimal value for the objective function is
% 
% fk(x) = (dk^2)/(ck'*P^{-1}*ck)
%
% Thus, the largest ellipsoid that contained in the polytope is given by
% x'*P*x = gamma where
%
% gamma = min { (dk^2)/(ck'*P^{-1}*ck) }
%          k

P_inv = inv(P);
gamma = Inf;
for k = 1:length(d)
  gamma_k = (d(k)*d(k))/(C(k,:)*P_inv*C(k,:)');
  if gamma_k < gamma
    gamma = gamma_k;
  end
end

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美精品aⅴ在线视频| 九九九精品视频| 色综合久久天天| 亚洲人成影院在线观看| 91在线精品一区二区三区| 中文一区在线播放| 97精品国产97久久久久久久久久久久| 久久精品一区二区三区av| 国产精品123区| 国产精品美女视频| 色天天综合色天天久久| 亚洲国产va精品久久久不卡综合| 欧美日韩在线播放一区| 日韩一区精品字幕| 日韩视频免费观看高清完整版 | 1024国产精品| 91原创在线视频| 亚洲福利电影网| 日韩午夜精品电影| 粉嫩欧美一区二区三区高清影视 | 成人国产在线观看| 亚洲精品美国一| 欧美放荡的少妇| 国产福利91精品| 一二三四区精品视频| 777xxx欧美| 粉嫩13p一区二区三区| 亚洲欧美电影院| 在线电影院国产精品| 国产麻豆精品久久一二三| 亚洲欧美中日韩| 欧美一级日韩不卡播放免费| 国产精品夜夜嗨| 亚洲女与黑人做爰| 日韩午夜在线观看视频| 成人精品免费视频| 亚洲aaa精品| 久久蜜桃av一区二区天堂 | 色94色欧美sute亚洲线路一久| 午夜欧美2019年伦理| 337p日本欧洲亚洲大胆色噜噜| 成人黄色av网站在线| 日韩影院免费视频| 中文字幕中文字幕一区| 欧美一级黄色录像| 色婷婷狠狠综合| 国产成人精品亚洲777人妖| 亚洲午夜久久久久久久久久久| 欧美精品一区二区高清在线观看| 91在线看国产| 国产成人精品免费网站| 青青草97国产精品免费观看| 中文字幕巨乱亚洲| 精品美女一区二区| 欧美日韩精品一区二区| 成人在线视频一区| 麻豆精品视频在线| 午夜久久久久久久久| 综合在线观看色| xfplay精品久久| 欧美一区二区在线视频| 91九色最新地址| 国产成人精品1024| 韩国精品主播一区二区在线观看 | 日韩你懂的在线播放| 在线视频综合导航| 99麻豆久久久国产精品免费| 精品系列免费在线观看| 日本少妇一区二区| 石原莉奈在线亚洲二区| 亚洲视频一区二区在线观看| 国产女人18毛片水真多成人如厕 | 亚洲与欧洲av电影| 亚洲欧美日韩在线| 中文字幕一区免费在线观看| 久久久久久久久伊人| 欧美成人在线直播| 337p亚洲精品色噜噜噜| 欧美亚洲另类激情小说| 91蝌蚪国产九色| 91年精品国产| 91网上在线视频| 色噜噜夜夜夜综合网| 色又黄又爽网站www久久| 99re成人精品视频| 99热这里都是精品| 色综合久久中文字幕综合网| 日本韩国欧美在线| 欧美三级韩国三级日本三斤 | 亚洲不卡在线观看| 亚洲成人综合在线| 图片区小说区区亚洲影院| 日韩精品亚洲专区| 美女高潮久久久| 美女视频黄 久久| 极品少妇一区二区三区精品视频| 国产在线视频一区二区| 国产精品自拍一区| 99re66热这里只有精品3直播 | 亚洲激情欧美激情| 亚洲成av人片一区二区三区| 日韩精品视频网站| 国产乱码一区二区三区| 成人爱爱电影网址| 欧美艳星brazzers| 日韩亚洲国产中文字幕欧美| 国产色91在线| 玉米视频成人免费看| 天堂在线一区二区| 国产一区二区三区四区五区美女| 成人一区二区三区中文字幕| 色屁屁一区二区| 日韩一区二区免费电影| 久久午夜老司机| 欧美一级欧美三级| 欧美精品黑人性xxxx| 国产亚洲综合在线| 亚洲男人的天堂av| 亚洲成a天堂v人片| 日韩高清欧美激情| 国产成人免费网站| 波多野结衣一区二区三区 | 亚洲免费观看高清完整版在线观看熊| 亚洲日本va午夜在线影院| 一区二区三区蜜桃| 蜜桃传媒麻豆第一区在线观看| 成人免费不卡视频| 欧美日韩日日骚| 精品捆绑美女sm三区| 国产精品萝li| 五月婷婷综合网| 狂野欧美性猛交blacked| www.99精品| 91精品黄色片免费大全| 久久午夜免费电影| 亚洲一区二区三区在线看| 国产一区二区三区高清播放| eeuss鲁片一区二区三区| 欧美日韩中文字幕精品| 久久久亚洲午夜电影| 自拍偷拍国产精品| 亚洲精品高清在线| 成人黄色片在线观看| 777xxx欧美| 专区另类欧美日韩| 美女视频黄 久久| 成人一区二区三区中文字幕| 精品国产伦一区二区三区观看方式| 欧美激情一区二区三区全黄| 亚洲大片精品永久免费| 成人免费看的视频| 欧美变态口味重另类| 日本不卡一二三| 91最新地址在线播放| 国产夜色精品一区二区av| 石原莉奈在线亚洲三区| 丁香另类激情小说| 国产偷国产偷亚洲高清人白洁 | av动漫一区二区| 日韩欧美中文一区二区| 午夜国产不卡在线观看视频| av高清不卡在线| 久久久综合精品| 免费人成精品欧美精品| 欧美视频中文一区二区三区在线观看| 亚洲欧美日本在线| 成人av影视在线观看| 日韩精品在线一区| 亚洲va国产va欧美va观看| 国产成人精品一区二| 国产日韩精品一区二区浪潮av | 精品中文字幕一区二区小辣椒| 在线亚洲人成电影网站色www| 欧美国产日本韩| 国产一区二区中文字幕| 欧美一区二区大片| 日韩精彩视频在线观看| 欧美三级中文字幕在线观看| 国产精品第13页| 成+人+亚洲+综合天堂| 日本一二三不卡| 国产成人小视频| 欧美一级在线观看| 极品少妇xxxx精品少妇偷拍| 日韩欧美一二区| 精品综合久久久久久8888| 精品少妇一区二区三区| 国产69精品久久777的优势| 久久久精品2019中文字幕之3| 韩日av一区二区| 久久久精品天堂| 久久69国产一区二区蜜臀| 亚洲精品在线一区二区| 国内精品免费**视频| 精品国精品自拍自在线| 久久av中文字幕片| 国产精品久久久久久久久搜平片| 丁香一区二区三区| 亚洲欧美在线另类| 欧美性三三影院|