亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? anneal.m

?? 該程序是基于Matlab編寫的模擬退火工具軟件包
?? M
?? 第 1 頁 / 共 2 頁
字號:
function [W,Ew,Wbsf,Ebsf,Tt,Et,Etarget,ert,Kt,Ebsft,Eh,M,rho,Ebin] = anneal( ...
    verbose, ...
    newstate, X, ...
    cost, moveclass, ...
    walkers, ...
    acceptrule, q, ...
    schedule, P, ...
    equilibrate, C, maxsteps, ...
    Tinit, r, ...
    Tfinal, f, maxtemps, ...
    v, bins, e)
% MAIN DRIVER and HELP file supplied with SA Tools.
% Copyright (c) 2002, by Richard Frost and Frost Concepts.
% See http://www.frostconcepts.com/software for information on SA Tools.
% Get the book:  http://www.frostconcepts.com/books/ebsa/
%
% [W,Ew,Wbsf,Ebsf,Tt,Et,Etarget,ert,Kt,Ebsft,Eh,M,rho,Ebin] = anneal( ...
%     verbose, ...
%     newstate, X, ...
%     cost, moveclass, ...
%     walkers, ...
%     acceptrule, q, ...
%     schedule, P, ...
%     equilibrate, C, maxsteps, ...
%     Tinit, r, ...
%     Tfinal, f, maxtemps, ...
%     v, bins, e)
%
%   verbose = prints status information when true (1).
%   newstate = (handle to) user-defined method
%           W0 = newstate(X)    where
%               X = user-defined problem domain or other data,
%                       behaviorally static.
%               W0 = an initial user-defined state.
%           Book chapter 2.
%   X = user-defined problem domain or other data, behaviorally static.
%           Book chapter 2.
%   cost = (handle to) user-defined objective method (function)
%           Ew = cost(X,W)    where
%               X = user-defined problem domain or other data.
%               W = a user-defined state from 'newstate' or 'moveclass'.
%               Ew = energy corresponding to W
%           Book chapter 9.
%   moveclass = (handle to) user-defined method,
%           W = moveclass(X,W,Ea,T)    where
%               X = user-defined problem domain or other data.
%               W = a user-defined state from 'newstate' or 'moveclass'.
%               Ea = average energy at current temperature.
%               T = current temperature
%           Book chapters 2.2 and 10.2.
%   walkers = number of walkers.  Must be positive integer.
%               walkers = 1 implies barebones annealing
%               walkers > 4 suggested for ensemble methods
%           Book chapters 4 and 7.
%   acceptrule = (handle to) SA Tools or user-defined method
%           a = acceptrule(dE,T,q)    where
%               dE = the difference in cost between a trial state and
%                       the current state: dE = Wtrial - W
%               T = the current temperature
%               q = any data required by the acceptrule
%               a = 0 if trial is rejected, otherwise 1.
%           SA Tools supplied methods are:
%               metropolis
%               szu
%               tsallis
%               threshold
%               franz
%           Book chapter 11.    
%   q = any data required by the acceptrule.
%           Book chapter 11.
%   schedule = (handle to) SA Tools or user-defined temperature update
%           nextT = schedule(Ea,Estd,walkers,dEtgt,v,e,T,t,P)    where
%               Ea = average energy at current temperature.
%               Estd = standard deviation of energies
%               dEtgt = difference between present and previous target mean energy
%               walkers = number of walkers.  Must be positive integer.
%               T = current temperature
%               i = # of current temperature
%                   (i.e., 1st temperature is 1, 2nd is 2, etc.)
%               P = any data required by schedule
%               nextT = next temperature
%           SA Tools supplied methods are:
%               geman
%               geometric
%               hartley
%               berkeley
%               thermospeedHC
%               thermospeedR
%               retrospect
%           Book chapter 13.
%   P = any data required by schedule.
%   equilibrate = (handle to) SA Tools method, or user-defined method,
%           or a non-function_handle type (e.g., 0).  If a function handle is 
%           supplied, then the temperature will not change (i.e., schedule will
%           not be called) until equilibrate returns false (0).  Otherwise, the
%           moveclass will be executed maxsteps times between each
%           temperature change.  Method signature:
%               b = equilibrate(Ea0,Ea,Ew,walkers,T,step,maxsteps,C)    where
%                   Ea0 = average energy at the beginning of the metropolis walk
%                   Ea = current average energy
%                   Ew = current energies corresponding to W (size walkers)
%                   walkers = the number of walkers in the simulation
%                   T = the current temperature
%                   step = the current number of steps taken in the walk
%                   maxsteps = an upper limit on the number of steps in the walk
%                   C = any behaviorally constant data required by the method
%                   b = 0 if the temperature may change, otherwise 1.
%               SA Tools supplied methods are:
%                   hoffmann    (wait-for-a-fluctuation)
%           Book chapter 13.
%   C = any data required by equilibrate.
%   maxsteps = maximum number of times to attempt equilibration (call moveclass at fixed T).
%           Book chapter 13.
%   Tinit = initial temperature (Inf ok) -- or (handle to) SA Tools method,
%           or user-defined method.  If method handle is not present, then the
%           initial temperature will be T0 = Tinit.  Otherwise, the method will
%           calculate T0.  All moves made during this method must be accepted.
%           Method signature:
%               [T0,W,Ew,Ev,steps] = Tinit(r, walkers, newstate, X, cost, moveclass)
%                   INPUTS:
%                       r = behaviorially constant data required by Tinit (if any)
%                       walkers, newstate, X, cost, moveclass: defined above
%                   OUTPUTS:
%                       T0 = initial temperature
%                       steps = # of steps taken by each walker during Tinit
%                       Ev = energy (cost) history at T (infinite for Tinit)
%                           i = arbitrary index
%                           Ev(i,1) = step #
%                           Ev(i,2) = walker #
%                           Ev(i,3) = an energy visited during T
%                           Ev(i,4) = energy attempted from Ev(i,1:3) during T
%                       W,Ew: defined below
%               SA Tools supplied methods are:
%                   TinitT0
%                   TinitAccept
%                   TinitWhite
%           Book section 13.1.
%   r = behaviorially constant data required by Tinit (if any)
%           Book section 13.1.
%   Tfinal = final temperature (-Inf ok) or (handle to) SA Tools method,
%           or user-defined method.  If method handle is not present, then the
%           simulation will end when T drops below the value of Tfinal.
%           Otherwise, the method will calculate a logical value which when
%           true (equal to 1) will stop the simulation.
%           Method signature:
%               b = Tfinal(W,Ew,t,Tt,Et,Etarget,ert,Kt,Ebsft,f)
%                   INPUTS:
%                       W = cell array of current states (size walkers)
%                       Ew = energies associated with W
%                       t = current temperature step index; i.e., current T = Tt(t).
%                       Tt = temperature history of simulation (so far)
%                       Et = mean energy history
%                       Etarget = target mean energy history
%                       ert = relaxation time history
%                       Kt = equilibrium step history
%                       Ebsft = Ebsf history
%                       f = behaviorally constant data required by Tfinal method
%                   OUTPUT:
%                       b = true (equal to 1) when final temperature iteration has been reached
%               SA Tools supplied methods are:
%                   TfinalNstep
%           Book section 13.1.
%   f = behaviorally constant data required by Tfinal method
%           Book section 13.1.
%   maxtemps = maximum number of temperature iterations.
%           Book chapter 13.
%   v = thermodynamic speed.
%               Effects thermospeed schedules.
%               Typically 0 < v < 1.  0 ok for non-thermospeed schedules.
%           Book chapter 13.
%   bins = # of bins to use in estimation of M, e, rho, and Ebin each temperature step.
%               If bins <= 0, then M, e, rho, and Ebin will not be calculated
%                   and the user-supplied constant value of e will be used each step.
%               If bins > 0, then the supplied value of e will be ignored and
%                   the TM method will be called to calculate M, e, rho, and Ebin.
%           Book section 12.2.1.
%   e = estimate of relaxation time.  See bins, above.
%           Book section 12.2.1.
%
%   RETURN VALUES:
%   W = cell array of final state(s) of size 'walkers'
%   Ew = array of final energies corresponding to W
%   Wbsf = array of best-so-far states of size 'walkers'
%   Ebsf = array of best-so-far energies
%   Tt(i) = temperature at temperature step i-1
%       NOTE: matlab does not permit indicies less than 1,
%               so step 0 is at i=1, etc.
%   Et(i) = average energy at Tt(i)
%   Etarget(i) = target mean energy at Tt(i), calculated with v.
%   ert(i) = estimated relaxation time at Tt(i), calculated with bins.
%   Kt(i) = number of equilibration steps taken at Tt(i)
%   Ebsft(i) = best-so-far energy at Tt(i)
%   Eh = energy and temperature history
%          i = 1, 1+(steps*walkers), etc.
%          Eh(i,1) = index t of temperature step
%          Eh(i,2) = T corresponding to t
%          Eh(i,3) = equilibrium step #j at T
%          Eh(i,4) = walker #k
%          Eh(i,5) = energy E visited by walker k at step j during T
%          Eh(i,6) = energy E' attempted from E by walker k at step j during T
%   M = final Transition Matrix (see book section 12.2.1).
%   rho = final estimate of equilibrium density of states
%   Ebin = energy bin centroids, min, and max
%          Ebin(1,:) are bin centroids.  Ebin(1,b) is the centroid for rho(b).
%          Ebin(2,:) are bin lower bounds
%          Ebin(3,:) are bin upper bounds
%
% Example uses of this driver can be found in the examples/ directory.
%
%   e.g.,
%
%   rand('state',sum(100*clock)) ;
%   [W,Ew,Wbsf,Ebsf,Tt,Et,Etarget,ert,Kt,Ebsft,Eh,M,rho,Ebin] = anneal( ...
%       1, ...
%       12, ...

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美一区二区三区四区五区| 成人深夜在线观看| 亚洲人妖av一区二区| 久久久久久久久久久久久久久99| 精品美女被调教视频大全网站| 777午夜精品免费视频| 在线播放视频一区| 日韩免费福利电影在线观看| 欧美本精品男人aⅴ天堂| 欧美成人猛片aaaaaaa| 欧美va亚洲va| 国产日韩高清在线| 国产精品第13页| 亚洲精品五月天| 亚洲成人av一区二区| 久久se精品一区二区| 国产成人aaa| 91精品1区2区| 欧美高清你懂得| 久久丝袜美腿综合| 国产精品福利一区| 亚洲成人久久影院| 韩国成人精品a∨在线观看| 成人精品视频一区| 欧美喷水一区二区| 久久女同精品一区二区| 欧美国产精品中文字幕| 亚洲精品乱码久久久久久久久 | 日韩激情一二三区| 蜜乳av一区二区三区| 成人久久久精品乱码一区二区三区 | 中文字幕一区二区三区蜜月| 亚洲国产一二三| 国产精品一二三区在线| 色系网站成人免费| 精品国免费一区二区三区| 成人免费一区二区三区视频 | 欧美日韩国产在线播放网站| 日韩欧美资源站| 综合电影一区二区三区 | 中文字幕在线视频一区| 亚洲成人一二三| 99久久伊人网影院| 日韩一区二区视频在线观看| 中文字幕一区二区三区四区| 久久超碰97中文字幕| 一本久久a久久精品亚洲| 精品国产一区二区三区忘忧草| 中文字幕亚洲精品在线观看 | av在线这里只有精品| 欧美日韩国产高清一区二区三区| 国产精品免费视频观看| 免费高清在线一区| 欧美激情中文字幕| 午夜精品福利在线| 色婷婷综合久久久中文字幕| 久久久精品中文字幕麻豆发布| 奇米色一区二区| 欧美日韩一区二区三区在线| 一区精品在线播放| 成人黄色一级视频| 久久久久久久久97黄色工厂| 麻豆国产精品官网| 3d成人动漫网站| 亚洲成人第一页| 欧美日韩午夜精品| 亚洲国产日韩a在线播放| 97久久超碰精品国产| ㊣最新国产の精品bt伙计久久| 国产乱理伦片在线观看夜一区| 欧美成人a∨高清免费观看| 五月天精品一区二区三区| 欧美日韩在线一区二区| 亚洲综合一二三区| 色婷婷av久久久久久久| 久久久久久久久久久久久久久99| 麻豆国产精品一区二区三区| 欧美成人福利视频| 激情国产一区二区| 26uuu另类欧美亚洲曰本| 国产一区不卡在线| 久久亚洲精华国产精华液| 国产成人高清视频| 欧美国产丝袜视频| 成人精品免费视频| 亚洲精品乱码久久久久久久久 | 亚洲精选在线视频| 欧美亚洲图片小说| 天堂av在线一区| 欧美成人a视频| 国产91在线观看| 亚洲精品乱码久久久久久久久| 欧美在线播放高清精品| 日韩成人一级片| 久久人人爽人人爽| 99re66热这里只有精品3直播| 亚洲精品免费在线播放| 欧美日本一区二区三区四区| 麻豆成人91精品二区三区| 国产午夜精品在线观看| 91亚洲精品久久久蜜桃| 日本免费新一区视频| 国产亚洲一区二区在线观看| 色婷婷亚洲综合| 蜜臀av一区二区在线观看| 国产精品私房写真福利视频| 欧美写真视频网站| 狠狠网亚洲精品| 亚洲激情男女视频| 精品国产一区二区三区忘忧草| 色综合天天综合狠狠| 免费观看久久久4p| 亚洲精品乱码久久久久| 欧美精品一区二区三区久久久| 91香蕉视频黄| 国产一区中文字幕| 亚洲亚洲人成综合网络| 国产色产综合色产在线视频| 欧美军同video69gay| www.日韩大片| 国产精品99久久久久久宅男| 亚洲国产精品影院| 国产精品黄色在线观看| 91精品国产黑色紧身裤美女| 91视频www| 国产精品一区二区久久不卡 | **性色生活片久久毛片| 久久中文字幕电影| 欧美男男青年gay1069videost| 国产成人99久久亚洲综合精品| 美女任你摸久久| 亚洲成av人片在www色猫咪| 国产精品久久久久久久蜜臀| 久久这里只有精品视频网| 91精品国产综合久久久久久久久久 | 精品一区二区三区不卡| 亚洲成人午夜电影| 一区二区三区中文字幕精品精品| 国产午夜精品一区二区| 91精品国产综合久久国产大片| 91传媒视频在线播放| av电影一区二区| 99麻豆久久久国产精品免费| 东方欧美亚洲色图在线| 国产精品99久久久久久有的能看 | 久久这里只有精品首页| 日韩精品一区二| 欧美大片日本大片免费观看| 9191久久久久久久久久久| 欧美三级资源在线| 色94色欧美sute亚洲线路一久| 色婷婷国产精品| 欧美日韩不卡在线| 欧美一区二区精品在线| 91精品久久久久久久久99蜜臂 | 久久国内精品自在自线400部| 日韩精品午夜视频| 久久不见久久见免费视频7| 九九视频精品免费| 国产精品2024| www.成人在线| 91成人免费在线| 91精品在线麻豆| 日韩免费观看2025年上映的电影| 精品久久久久久久久久久久久久久久久| 91精品欧美福利在线观看| 欧美精品一区二区三| 国产天堂亚洲国产碰碰| 亚洲欧美一区二区三区孕妇| 一区二区三区在线播| 日本午夜一本久久久综合| 国产一区亚洲一区| 成人综合在线网站| 欧美特级限制片免费在线观看| 欧美精品久久久久久久久老牛影院| 91精品免费在线| 中国色在线观看另类| 亚洲一区二区免费视频| 久久er精品视频| 99vv1com这只有精品| 欧美精品第1页| 国产精品全国免费观看高清 | 国产蜜臀97一区二区三区| 亚洲精品精品亚洲| 毛片不卡一区二区| av在线播放一区二区三区| 欧美乱妇15p| 国产精品伦理一区二区| 日韩中文字幕不卡| 粉嫩蜜臀av国产精品网站| 欧美精品视频www在线观看 | 午夜精品福利在线| 成人av午夜影院| 91精品国产色综合久久不卡蜜臀| 国产三级一区二区三区| 亚洲国产乱码最新视频| 成人av影视在线观看| 精品欧美黑人一区二区三区| 亚洲综合网站在线观看| 风流少妇一区二区|