亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? pitcon.txt

?? 求N個(gè)變量
?? TXT
?? 第 1 頁 / 共 5 頁
字號(hào):
!
!  RWORK(3)        HMIN, minimum allowable predictor stepsize.  If failures of
!                  the Newton correction force the stepsize down to this level,
!                  then the program will give up.  The default value is
!                  SQRT(EPMACH).
!
!  RWORK(4)        HMAX, maximum allowable predictor step.  Too generous a value
!                  may cause erratic behavior of the program.  The default
!                  value is SQRT(NVAR).
!
!  RWORK(5)        HTAN,  the predictor stepsize.  On first call, it should be
!                  set by the user.  Thereafter it is set by the program.
!                  RWORK(5) should be positive.  In order to travel in the
!                  negative direction, see RWORK(6).
!                  The default initial value equals 0.5*(RWORK(3)+RWORK(4)).
!
!  RWORK(6)        The local continuation direction, which is either +1.0
!                  or -1.0 .  This asserts that the program is moving in the
!                  direction of increasing or decreasing values of the local
!                  continuation variable, whose index is in IWORK(2).  On first
!                  call, the user must choose IWORK(2).  Therefore, by setting
!                  RWORK(6), the user may also specify whether the program is
!                  to move initially to increase or decrease the variable whose
!                  index is IWORK(2).
!                  RWORK(6) defaults to +1.
!
!  RWORK(7)        A target value.  It is only used if a target index
!                  has been specified through IWORK(5).  In that case, solution
!                  points with the IWORK(5) component equal to RWORK(7) are
!                  to be computed. The code will return each time it finds such
!                  a point.  RWORK(7) does not have a default value.  The
!                  program does not set it, and it is not referenced unless
!                  IWORK(5) has been set.
!
!  RWORK(8)        EPMACH, the value of the machine precision.  The computer
!                  can distinguish 1.0+EPMACH from 1.0, but it cannot
!                  distinguish 1.0+(EPMACH/2) from 1.0. This number is used
!                  when estimating a reasonable accuracy request on a given
!                  computer.  PITCON computes a value for EPMACH internally.
!
!  RWORK(9)        STEPX, the size, using the maximum-norm, of the last
!                  step of Newton correction used on the most recently
!                  computed point, whether a starting point, continuation
!                  point, limit point or target point.
!
!  RWORK(10)       A minimum angle used in the steplength computation,
!                  equal to 2.0*ARCCOS(1-EPMACH).
!
!  RWORK(11)       Estimate of the angle between the tangent vectors at the
!                  last two continuation points.
!
!  RWORK(12)       The pseudo-arclength coordinate of the previous continuation
!                  pointl; that is, the sum of the Euclidean distances between
!                  all computed continuation points beginning with the start
!                  point.  Thus each new point should have a larger coordinate,
!                  except for target and limit points which lie between the two
!                  most recent continuation points.
!
!  RWORK(13)       Estimate of the pseudo-arclength coordinate of the current
!                  continuation point.
!
!  RWORK(14)       Estimate of the pseudoarclength coordinate of the current
!                  limit or target point, if any.
!
!  RWORK(15)       Size of the correction of the most recent continuation
!                  point; that is, the maximum norm of the distance between the
!                  predicted point and the accepted corrected point.
!
!  RWORK(16)       Estimate of the curvature between the last two
!                  continuation points.
!
!  RWORK(17)       Sign of the determinant of the augmented matrix at the
!                  last continuation point whose tangent vector has been
!                  calculated.
!
!  RWORK(18)       This quantity is only used if the jacobian matrix is to
!                  be estimated using finite differences.  In that case,
!                  this value determines the size of the increments and
!                  decrements made to the current solution values, according
!                  to the following formula:
!
!                    Delta X(J) = RWORK(18) * (1.0 + ABS(X(J))).
!
!                  The value of every entry of the approximate jacobian could
!                  be extremely sensitive to RWORK(18).  Obviously, no value
!                  is perfect.  Values too small will surely cause singular
!                  jacobians, and values too large will surely cause inaccuracy.
!                  Little more is certain.  However, for many purposes, it
!                  is suitable to set RWORK(18) to the square root of the
!                  machine epsilon, or perhaps to the third or fourth root,
!                  if singularity seems to be occuring.
!
!                  RWORK(18) defaults to SQRT(SQRT(RWORK(8))).
!
!                  The user may set RWORK(18).  If it has a nonzero value on
!                  input, that value will be used.  Otherwise, the default
!                  value will be used.
!
!  RWORK(19)       Not currently used.
!
!  RWORK(20)       Maximum growth factor for the predictor stepsize based
!                  on the previous secant stepsize.  The stepsize algorithm
!                  will produce a suggested step that is no less that the
!                  previous secant step divided by this factor, and no greater
!                  than the previous secant step multiplied by that factor.
!                  RWORK(20) defaults to 3.
!
!  RWORK(21)       The (Euclidean) secant distance between the last two
!                  computed continuation points.
!
!  RWORK(22)       The previous value of RWORK(21).
!
!  RWORK(23)       A number judging the quality of the Newton corrector
!                  convergence at the last continuation point.
!
!  RWORK(24)       Value of the component of the current tangent vector
!                  corresponding to the current continuation index.
!
!  RWORK(25)       Value of the component of the previous tangent vector
!                  corresponding to the current continuation index.
!
!  RWORK(26)       Value of the component of the current tangent vector
!                  corresponding to the limit index in IWORK(6).
!
!  RWORK(27)       Value of the component of the previous tangent vector
!                  corresponding to the limit index in IWORK(6).
!
!  RWORK(28)       Value of RWORK(7) when the last target point was
!                  computed.
!
!  RWORK(29)       Sign of the determinant of the augmented matrix at the
!                  previous continuation point whose tangent vector has been
!                  calculated.
!
!  RWORK(30)       through RWORK(30+4*NVAR-1) are used by the program to hold
!                  an old and new continuation point, a tangent vector and a
!                  work vector.  Subsequent entries of RWORK are used by the
!                  linear solver.
!
!
!  I) Programming Notes:
!  --------------------
!
!  The minimal input and user routines required to apply the program are:
!
!    Write a function routine FX of the form described above.
!    Use DENSLV as the linear equation solver by setting SLVNAM to DENSLV.
!    Skip writing a Jacobian routine by using the finite difference option.
!    Pass the name of FX as the Jacobian name as well.
!    Declare the name of the function FX as external.
!    Set NVAR in accordance with your problem.
!
!  Then:
!
!    Dimension the vector IWORK to the size LIW = 29+NVAR.
!    Dimension the vector RWORK to the size LRW = 29+NVAR*(NVAR+6).
!    Dimension IPAR(1) and FPAR(1) as required in the function routine.
!    Dimension XR(NVAR) and set it to an approximate solution of F(XR) = 0.
!
!  Set the work arrays as follows:
!
!    Initialize IWORK to 0 and RWORK to 0.0.
!
!    Set IWORK(1) = 0 (Problem startup)
!    Set IWORK(7) = 3 (Maximum internally generated output)
!    Set IWORK(9) = 1 (Forward difference Jacobian)
!
!  Now call the program repeatedly, and never change any of its arguments.
!  Check IERROR to decide whether the code is working satisfactorily.
!  Print out the vector XR to see the current solution point.
!
!
!  The most obvious input to try to set appropriately after some practice
!  would be the error tolerances RWORK(1) and RWORK(2), the minimum, maximum
!  and initial stepsizes RWORK(3), RWORK(4) and RWORK(5), and the initial
!  continuation index IWORK(2).
!
!  For speed and efficiency, a Jacobian routine should be written. It can be
!  checked by comparing its results with the finite difference Jacobian.
!
!  For a particular problem, the target and limit point input can be very
!  useful.  For instance, in the case of a discretized boundary value problem
!  with a real parameter it may be desirable to compare the computed solutions
!  for different discretization-dimensions and equal values of the parameter.
!  For this the target option can be used with the prescribed values of the
!  parameter. Limit points usually are of importance in connection with
!  stability considerations.
!
!
!  The routine REPS attempts to compute the machine precision, which in practice
!  is simply the smallest power of two that can be added to 1 to produce a
!  result greater than 1.  If the REPS routine misbehaves, you can replace
!  it by code that assigns a constant precomputed value, or by a call to
!  the PORT/SLATEC routine R1MACH.  REPS is called just once, in the
!  PITCON routine, and the value returned is stored into RWORK(8).
!
!  In subroutines DENSLV and BANSLV, the parameter "EPS" is set to RWORK(18)
!  and used in estimating jacobian matrices via finite differences.  If EPS is
!  too large, the jacobian will be very inaccurate.  Unfortunately, if EPS is
!  too small, the "finite" differences may become "infinitesmal" differences.
!  That is, the difference of two function values at close points may be
!  zero.  This is a very common problem, and occurs even with a function
!  like F(X) = X*X.  A singular jacobian is much worse than an inaccurate one,
!  so we have tried setting the default value of RWORK(18) to
!  SQRT(SQRT(RWORK(8)).  Such a value attempts to ward off singularity at the
!  expense of accuracy.  You may find for a particular problem or machine that
!  this value is too large and should be adjusted.  It is an utterly arbitrary
!  value.
!
!
!  J) References:
!  -------------
!
!  1.
!  Werner Rheinboldt,
!  Solution Field of Nonlinear Equations and Continuation Methods,
!  SIAM Journal of Numerical Analysis,
!  Volume 17, 1980, pages 221-237.
!
!  2.
!  Cor den Heijer and Werner Rheinboldt,
!  On Steplength Algorithms for a Class of Continuation Methods,
!  SIAM Journal of Numerical Analysis,
!  Volume 18, 1981, pages 925-947.
!
!  3.
!  Werner Rheinboldt,
!  Numerical Analysis of Parametrized Nonlinear Equations
!  John Wiley and Sons, New York, 1986
!
!  4.
!  Werner Rheinboldt and John Burkardt,
!  A Locally Parameterized Continuation Process,
!  ACM Transactions on Mathematical Software,
!  Volume 9, Number 2, June 1983, pages 215-235.
!
!  5.
!  Werner Rheinboldt and John Burkardt,
!  Algorithm 596, A Program for a Locally Parameterized Continuation Process,
!  ACM Transactions on Mathematical Software,
!  Volume 9, Number 2, June 1983, Pages 236-241.
!
!  6.
!  J J Dongarra, J R Bunch, C B Moler and G W Stewart,
!  LINPACK User's Guide,
!  Society for Industrial and Applied Mathematics,
!  Philadelphia, 1979.
!
!  7.
!  Richard Brent,
!  Algorithms for Minimization without Derivatives,
!  Prentice Hall, 1973.
!
!  8.
!  Tony Chan,
!  Deflated Decomposition of Solutions of Nearly Singular Systems,
!  Technical Report 225,
!  Computer Science Department,
!  Yale University,
!  New Haven, Connecticut, 06520,
!  1982.
!
!
!  L)  Sample programs:
!  -------------------
!
!
!  A number of sample problems are included with PITCON.  There are several
!  examples of the Freudenstein-Roth function, which is a nice example
!  with only a few variables, and nice whole number starting and stopping
!  points.  Other sample problems demonstrate or test various options in
!  PITCON.
!
!
!  1:
!  pcprb1.f
!  The Freudenstein-Roth function.  3 variables.
!
!  This is a simple problem, whose solution curve has some severe bends.
!  This file solves the problem with a minimum of fuss.
!
!
!  2:
!  pcprb2.f
!  The Aircraft Stability problem.  8 variables.
!
!  This is a mildly nonlinear problem, whose solution curve has some
!  limit points that are difficult to track.
!
!
!  3:
!  pcprb3.f
!  A boundary value problem.  22 variables.
!
!  This problem has a limit point in the LAMBDA parameter, which we seek.  We
!  solve this problem 6 times, illustrating the use of full and banded
!  jacobians, and of user-generated, or forward or central difference
!  approximated jacobian matrices.
!
!  The first 21 variables represent the values of a function along a grid
!  of 21 points between 0 and 1.  By increasing the number of grid points,
!  the problem can be set up with arbitrarily many variables.  This change
!  requires changing a single parameter in the main program.
!
!

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
波多野结衣中文一区| 一区二区三区中文字幕| 麻豆精品久久久| 欧美一区二区三区播放老司机| 五月天亚洲精品| 欧美成人video| 国产乱对白刺激视频不卡| 欧美激情一区二区三区在线| 懂色av一区二区夜夜嗨| 亚洲欧美一区二区在线观看| 在线影院国内精品| 图片区日韩欧美亚洲| 欧美变态凌虐bdsm| 丁香五精品蜜臀久久久久99网站| 国产精品色噜噜| 一本久道中文字幕精品亚洲嫩| 亚洲五月六月丁香激情| 精品久久久久一区| 成人黄色片在线观看| 一区二区三区日韩欧美| 91精品国产91热久久久做人人| 麻豆91免费观看| 国产精品久久久一区麻豆最新章节| 91久久人澡人人添人人爽欧美| 午夜精品一区二区三区免费视频| 精品日韩一区二区| eeuss鲁一区二区三区| 亚洲成av人片一区二区三区| 26uuu国产电影一区二区| 99精品久久免费看蜜臀剧情介绍| 亚洲成人三级小说| 国产亚洲污的网站| 欧美日韩亚洲另类| 成人动漫中文字幕| 激情国产一区二区| 亚洲国产日日夜夜| 中文字幕av一区二区三区免费看 | 成人免费毛片片v| 夜夜揉揉日日人人青青一国产精品| 日韩一区二区三区观看| 成人黄色a**站在线观看| 日韩精品1区2区3区| 国产精品天美传媒沈樵| 日韩你懂的在线播放| 91在线视频网址| 国产乱码精品一品二品| 日韩av电影天堂| 夜色激情一区二区| 国产精品沙发午睡系列990531| 日韩一区二区三区观看| 欧美色视频在线| av在线播放不卡| 国产精品综合二区| 蜜乳av一区二区| 亚洲风情在线资源站| 国产精品麻豆网站| 久久久国产一区二区三区四区小说| 欧美日韩一区二区在线观看| 91丨九色丨黑人外教| 国产伦精品一区二区三区免费| 午夜精彩视频在线观看不卡| 成人欧美一区二区三区黑人麻豆| 精品国产伦理网| 日韩欧美高清dvd碟片| 欧美日韩久久久一区| 91国产成人在线| 不卡电影一区二区三区| 成人综合婷婷国产精品久久蜜臀 | 欧美成人vr18sexvr| 欧美一个色资源| 在线播放国产精品二区一二区四区| 色综合久久中文综合久久牛| 欧美精品在线观看播放| 日本精品视频一区二区三区| 成人视屏免费看| 成人影视亚洲图片在线| 国产成a人无v码亚洲福利| 国产精品2024| 9人人澡人人爽人人精品| 岛国av在线一区| 菠萝蜜视频在线观看一区| av男人天堂一区| 91性感美女视频| 91久久精品国产91性色tv| 色婷婷av久久久久久久| 欧美日韩一区三区四区| 欧美日韩国产另类一区| 欧美疯狂做受xxxx富婆| 欧美一区二区在线免费播放 | 欧美电影免费观看高清完整版在线 | 热久久国产精品| 日韩电影一区二区三区四区| 捆绑调教一区二区三区| 国产一区二区免费在线| 豆国产96在线|亚洲| 91国产成人在线| 欧美一区二区三区免费观看视频 | 欧美日韩国产免费| 日韩欧美一区二区三区在线| 精品久久国产字幕高潮| 国产精品二三区| 亚洲成人av福利| 久久狠狠亚洲综合| 白白色 亚洲乱淫| 欧美中文字幕一区| 精品美女被调教视频大全网站| 久久久久久久网| 亚洲精品成人精品456| 日韩成人免费电影| 国产成人激情av| 欧美日韩一区高清| 久久久99精品免费观看| 亚洲男人的天堂在线aⅴ视频| 石原莉奈在线亚洲三区| 国产成人午夜高潮毛片| 在线观看www91| 久久久亚洲午夜电影| 国产成人av影院| 在线日韩av片| 久久视频一区二区| 亚洲最大成人网4388xx| 精品亚洲porn| 欧美亚洲尤物久久| 久久一日本道色综合| 亚洲最新视频在线观看| 国产乱理伦片在线观看夜一区| 欧美自拍偷拍一区| 久久久不卡网国产精品一区| 亚洲愉拍自拍另类高清精品| 国产在线麻豆精品观看| 欧美色电影在线| 国产精品精品国产色婷婷| 蜜臀av一级做a爰片久久| 91蜜桃免费观看视频| 欧美精品一区二区三区高清aⅴ | 日韩精品福利网| 色狠狠桃花综合| 国产欧美一区二区精品秋霞影院 | 亚洲色图色小说| 国内精品久久久久影院薰衣草| 欧美日韩亚洲综合一区二区三区| 亚洲国产高清aⅴ视频| 青青草国产精品亚洲专区无| 色综合激情久久| 国产精品久久久久aaaa樱花 | 色伊人久久综合中文字幕| 天天操天天干天天综合网| 91亚洲男人天堂| 久久九九99视频| 美女脱光内衣内裤视频久久网站| 91精彩视频在线观看| 国产精品美女久久久久久| 久久99精品久久久久久久久久久久| 日本高清成人免费播放| 日韩一区在线看| 国产99久久久久| 国产日韩精品视频一区| 国产剧情av麻豆香蕉精品| 日韩欧美国产一区在线观看| 天天综合日日夜夜精品| 精品视频资源站| 天堂成人免费av电影一区| 欧美天堂一区二区三区| 亚洲一二三四区不卡| 在线观看一区不卡| 亚洲国产综合色| 欧美视频在线观看一区| 亚洲一区在线视频观看| 欧洲精品在线观看| 亚洲尤物在线视频观看| 欧美日韩久久一区| 日日摸夜夜添夜夜添亚洲女人| 欧美喷水一区二区| 人人狠狠综合久久亚洲| 日韩视频免费观看高清完整版在线观看 | 欧美精品一区二| 国产精品一区一区三区| 日本一区二区久久| 99视频有精品| 亚洲精品日韩一| 欧美视频精品在线观看| 亚洲一级不卡视频| 日韩亚洲欧美中文三级| 九九国产精品视频| 国产亚洲精品福利| 99riav一区二区三区| 亚洲最色的网站| 日韩欧美激情在线| 高清不卡一区二区在线| 亚洲免费伊人电影| 欧美精品九九99久久| 久久99久久精品欧美| 中文字幕不卡的av| 欧美日韩视频在线第一区| 青青青伊人色综合久久| 国产女人18水真多18精品一级做| 99免费精品视频| 日韩在线一区二区| 欧美激情在线一区二区三区| 在线观看视频欧美|