?? eo.tpl
字號:
\TEMPLATE_START// -*- mode: c++; c-indent-level: 2; c++-member-init-indent: 8; comment-column: 35; -*-
//
// (The above line is useful in Emacs-like editors)
//
//*************************************
//
// EASEA.cpp
//
// C++ file generated by AESAE-EO v0.7
//
//*************************************
//
//
// Main file for creating a new representation in EO
// =================================================
//
// This main file includes all other files that have been generated by the
// script create.sh, so it is the only file to compile.
//
// In case you want to build up a separate library for your new Evolving Object,
// you'll need some work - follow what's done in the src/ga dir, used in the
// main file BitEA in tutorial/Lesson4 dir.
// Or you can wait until we do it :-)
// Miscellany includes and declarations
#include <iostream>
using namespace std;
// eo general include
#include "eo"
// real bounds (not yet in general eo include)
#include "utils/eoRealVectorBounds.h"
unsigned *pCurrentGeneration;
unsigned *pEZ_NB_GEN;
double EZ_MUT_PROB, EZ_XOVER_PROB, EZ_REPL_PERC=0.0;
int EZ_NB_GEN, EZ_POP_SIZE;
unsigned long EZ_NB_EVALUATIONS=0L;
inline int random(int b1=0, int b2=1){
return rng.random(b2-b1)+b1;
}
inline double random(double b1=0, double b2=1){
return rng.uniform(b2-b1)+b1;
}
inline float random(float b1=0, float b2=1){
return rng.uniform(b2-b1)+b1;
}
\ANALYSE_PARAMETERS
\INSERT_USER_DECLARATIONS
\INSERT_INITIALISATION_FUNCTION
// include here whatever specific files for your representation
// Basically, this should include at least the following
/** definition of representation:
* class EASEAGenome MUST derive from EO<FitT> for some fitness
*/
#include "EASEAGenome.h"
// GENOTYPE EASEAGenome ***MUST*** be templatized over the fitness
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
// START fitness type: double or eoMaximizingFitness if you are maximizing
// eoMinimizingFitness if you are minimizing
typedef \MINIMAXI MyFitT ; // type of fitness
// END fitness type
//*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
// Then define your EO objects using that fitness type
typedef EASEAGenome<MyFitT> Indi; // ***MUST*** derive from EO
\INSERT_USER_FUNCTIONS
/** definition of evaluation:
* class EASEAEvalFunc MUST derive from eoEvalFunc<EASEAGenome>
* and should test for validity before doing any computation
* see tutorial/Templates/evalFunc.tmpl
*/
#include "EASEAEvalFunc.h"
/** definition of initialization:
* class EASEAGenomeInit MUST derive from eoInit<EASEAGenome>
*/
#include "EASEAInit.h"
/** include all files defining variation operator classes
*/
#include "EASEAMutation.h"
#include "EASEAQuadCrossover.h"
// Use existing modules to define representation independent routines
// These are parser-based definitions of objects
// how to initialize the population
// it IS representation independent if an eoInit is given
#include <make_pop.h>
eoPop<Indi >& make_pop(eoParser& _parser, eoState& _state, eoInit<Indi> & _init){
return do_make_pop(_parser, _state, _init);
}
// the stopping criterion
#include "make_continue.h"
eoContinue<Indi>& make_continue(eoParser& _parser, eoState& _state, eoEvalFuncCounter<Indi> & _eval){
return do_make_continue(_parser, _state, _eval);
}
// outputs (stats, population dumps, ...)
#include <make_checkpoint.h>
eoCheckPoint<Indi>& make_checkpoint(eoParser& _parser, eoState& _state, eoEvalFuncCounter<Indi>& _eval, eoContinue<Indi>& _continue) {
return do_make_checkpoint(_parser, _state, _eval, _continue);
}
// evolution engine (selection and replacement)
#include <make_algo_easea.h>
eoAlgo<Indi>& make_algo_scalar(eoParser& _parser, eoState& _state, eoEvalFunc<Indi>& _eval, eoContinue<Indi>& _continue, eoGenOp<Indi>& _op){
return do_make_algo_scalar(_parser, _state, _eval, _continue, _op);
}
// simple call to the algo. stays there for consistency reasons
// no template for that one
#include <make_run.h>
// the instanciating fitnesses
#include <eoScalarFitness.h>
void run_ea(eoAlgo<Indi>& _ga, eoPop<Indi>& _pop){
do_run(_ga, _pop);
}
// checks for help demand, and writes the status file
// and make_help; in libutils
void make_help(eoParser & _parser);
// now use all of the above, + representation dependent things
int main(int argc, char* argv[]){
try {
\INSERT_INIT_FCT_CALL
eoParser parser(argc, argv); // for user-parameter reading
eoState state; // keeps all things allocated
// The fitness
//////////////
EASEAEvalFunc<Indi> plainEval/* (varType _anyVariable) */;
// turn that object into an evaluation counter
eoEvalFuncCounter<Indi> eval(plainEval);
// a genotype initializer
EASEAInit<Indi> init;
// or, if you need some parameters, you might as well
// - write a constructor of the eoMyStructInit that uses a parser
// - call it from here:
// eoEASEAInit<Indi> init(parser);
// Build the variation operator (any seq/prop construct)
// here, a simple example with only 1 crossover (2->2, a QuadOp) and
// one mutation, is given.
// Hints to have choice among multiple crossovers and mutations are given
// A (first) crossover (possibly use the parser in its Ctor)
EASEAQuadCrossover<Indi> cross /* (eoParser parser) */;
// IF MORE THAN ONE:
// read its relative rate in the combination
// double cross1Rate = parser.createParam(1.0, "cross1Rate", "Relative rate for crossover 1", '1', "Variation Operators").value();
// create the combined operator with the first one (rename it cross1 !!!)
// eoPropCombinedQuadOp<Indi> cross(cross1, cross1Rate);
// and as many as you want the following way:
// 1- write the new class by mimicking eoEASEAQuadCrossover.h
// 2- include that file here together with eoEASEAQuadCrossover above
// 3- uncomment and duplicate the following lines:
//
// eoEASEASecondCrossover<Indi> cross2(eoParser parser);
// double cross2Rate = parser.createParam(1.0, "cross2Rate", "Relative rate for crossover 2", '2', "Variation Operators").value();
// cross.add(cross2, cross2Rate);
// NOTE: if you want some gentle output, the last one shoudl be like
// cross.add(cross, crossXXXRate, true);
/////////////// Same thing for MUTATION
// a (first) mutation (possibly use the parser in its Ctor)
EASEAMutation<Indi> mut /* (eoParser parser) */;
// IF MORE THAN ONE:
// read its relative rate in the combination
// double mut1Rate = parser.createParam(1.0, "mut1Rate", "Relative rate for mutation 1", '1', "Variation Operators").value();
// create the combined operator with the first one (rename it cross1 !!!)
// eoPropCombinedMonOp<Indi> mut(mut1, mut1Rate);
// and as many as you want the following way:
// 1- write the new class by mimicking eoEASEAMutation.h
// 2- include that file here together with eoEASEAMutation above
// 3- uncomment and duplicate the following lines:
//
// eoEASEASecondMutation<Indi> mut2(eoParser parser);
// double mut2Rate = parser.createParam(1.0, "mut2Rate", "Relative rate for mutation 2", '2', "Variation Operators").value();
// mut.add(mut2, mut2Rate);
// NOTE: if you want some gentle output, the last one shoudl be like
// mut.add(mut, mutXXXRate, true);
// now encapsulate your crossover(s) and mutation(s) into an eoGeneralOp
// so you can fully benefit of the existing evolution engines
// First read the individual level parameters
double pCross = parser.createParam(0.6, "pCross", "Probability of Crossover", 'C', "Variation Operators" ).value();
// minimum check
if ( (pCross < 0) || (pCross > 1) )
throw runtime_error("Invalid pCross");
double pMut = parser.createParam(0.1, "pMut", "Probability of Mutation", 'M', "Variation Operators" ).value();
// minimum check
if ( (pMut < 0) || (pMut > 1) )
throw runtime_error("Invalid pMut");
// now create the generalOp
eoSGAGenOp<Indi> op(cross, pCross, mut, pMut);
//// Now the representation-independent things
//
// YOU SHOULD NOT NEED TO MODIFY ANYTHING BEYOND THIS POINT
// unless you want to add specific statistics to the checkpoint
//////////////////////////////////////////////
// initialize the population
// yes, this is representation indepedent once you have an eoInit
eoPop<Indi>& pop = make_pop(parser, state, init);
// give popSize to AESAE control
EZ_POP_SIZE = pop.size();
// stopping criteria
eoContinue<Indi> & term = make_continue(parser, state, eval);
// output
eoCheckPoint<Indi> & checkpoint = make_checkpoint(parser, state, eval, term);
// algorithm (need the operator!)
eoAlgo<Indi>& ga = make_algo_scalar(parser, state, eval, checkpoint, op);
///// End of construction of the algorithm
/////////////////////////////////////////
// to be called AFTER all parameters have been read!!!
make_help(parser);
//// GO
///////
// evaluate intial population AFTER help and status in case it takes time
apply<Indi>(eval, pop);
// if you want to print it out
// cout << "Initial Population\n";
// pop.sortedPrintOn(cout);
// cout << endl;
run_ea(ga, pop); // run the ga
cout << "Best individual in final population\n";
cout << pop.best_element() << endl;
}
catch(exception& e)
{
cout << e.what() << endl;
}
return 0;
}
\START_EO_GENOME_H_TPL// -*- mode: c++; c-indent-level: 2; c++-member-init-indent: 8; comment-column: 35; -*-
//
// (The above line is useful in Emacs-like editors)
//
//*************************************
//
// EASEAGenome.h
//
// C++ file generated by AESAE-EO v0.7
//
//*************************************
//
#ifndef _EASEAGenome_h
#define _EASEAGenome_h
/**
* Always write a comment in this format before class definition
* if you want the class to be documented by Doxygen
* Note that you MUST derive your structure from EO<fitT>
* but you MAY use some other already prepared class in the hierarchy
* like eoVector for instance, if you handle a vector of something....
* If you create a structure from scratch,
* the only thing you need to provide are
* a default constructor
* IO routines printOn and readFrom
*
* Note that operator<< and operator>> are defined at EO level
* using these routines
*/
\ANALYSE_USER_CLASSES
\INSERT_USER_CLASSES
template< class FitT>
class EASEAGenome: public EO<FitT> {
public:
/** Ctor: you MUST provide a default ctor.
* though such individuals will generally be processed
* by some eoInit object
*/
EASEAGenome() : EO<FitT>()
{
// START Code of default Ctor of an EASEAGenome object
\GENOME_CTOR
// END Code of default Ctor of an EASEAGenome object
}
EASEAGenome(const EASEAGenome & arg) : EO<FitT>()
{
\GENOME_CTOR
copy(arg);
}
virtual ~EASEAGenome()
{
// START Code of Destructor of an EASEAGenome object
\GENOME_DTOR
// END Code of Destructor of an EASEAGenome object
}
virtual string className() const { return "EASEAGenome"; }
EASEAGenome& operator=(const EASEAGenome & arg) {
copy(arg);
return *this;
}
void copy(const EASEAGenome& genome)
{
if(&genome != this){
\GENOME_DTOR
\COPY_CTOR
if (genome.invalid()) { // copying an invalid genome
fitness(FitT()); // put a valid value (i.e. non NAN)
invalidate(); // but INVALIDATE the genome
}
else
fitness(genome.fitness());
}
}
bool operator==(const EASEAGenome & genome) const {
\EQUAL
return true;
}
bool operator!=(const EASEAGenome & genome) const {
return !(*this==genome);
}
/** printing... */
void printOn(ostream& os) const
{
// First write the fitness
EO<FitT>::printOn(os);
os << ' ';
// START Code of default output
/** HINTS
* in EO we systematically write the sizes of things before the things
* so readFrom is easier to code (see below)
*/
\INSERT_DISPLAY
\WRITE
// END Code of default output
}
/** reading...
* of course, your readFrom must be able to read what printOn writes!!!
*/
void readFrom(istream& is)
{
// of course you should read the fitness first!
EO<FitT>::readFrom(is);
// START Code of input
/** HINTS
* remember the EASEAGenome object will come from the default ctor
* this is why having the sizes written out is useful
*/
\READ
// END Code of input
}
//private: // put all data here - no privacy in EASEA
// START Private data of an EASEAGenome object
\INSERT_GENOME
// END Private data of an EASEAGenome object
};
#endif
\START_EO_EVAL_TPL// -*- mode: c++; c-indent-level: 2; c++-member-init-indent: 8; comment-column: 35; -*-
//
// (The above line is useful in Emacs-like editors)
//
//*************************************
//
// EASEAEvalFunc.h
//
// C++ file generated by AESAE-EO v0.7
//
//*************************************
//
/*
Evaluator in EO: a functor that computes the fitness of an EO
=============================================================
*/
#ifndef _EASEAEvalFunc_h
#define _EASEAEvalFunc_h
// include whatever general include you need
#include <stdexcept>
#include <fstream>
// include the base definition of eoEvalFunc
#include "eoEvalFunc.h"
/**
Always write a comment in this format before class definition
if you want the class to be documented by Doxygen
*/
template <class EOT>
class EASEAEvalFunc : public eoEvalFunc<EOT>
{
public:
/// Ctor - no requirement
// START eventually add or modify the anyVariable argument
EASEAEvalFunc()
// EASEAEvalFunc( varType _anyVariable) : anyVariable(_anyVariable)
// END eventually add or modify the anyVariable argument
{
// START Code of Ctor of an EASEAEvalFunc object
// END Code of Ctor of an EASEAEvalFunc object
}
/** Actually compute the fitness
*
* @param EOT & _eo the EO object to evaluate
* it should stay templatized to be usable
* with any fitness type
*/
void operator()(EOT & genome)
{
// test for invalid to avoid recomputing fitness of unmodified individuals
if (genome.invalid())
{
// START Code of computation of fitness of the EASEA object
\INSERT_EVALUATOR
// END Code of computation of fitness of the EASEA object
}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -