?? pascal.txt
字號:
基本算法(用 PASCAL 描述)
[作者:sortmail 轉貼自:Delphibbs.com 點擊數:462 更新時間:2005-1-22 文章錄入:aleyn]
基本算法(用 PASCAL 描述)
1.數論算法
求兩數的最大公約數
function gcd(a,b:integer):integer;
begin
if b=0 then gcd:=a
else gcd:=gcd (b,a mod B);
end;
求兩數的最小公倍數
function lcm(a,b:integer):integer;
begin
if a< b then swap(a,B);
lcm:=a;
while lcm mod b >0 do inc(lcm,a);
end;
素數的求法
A.小范圍內判斷一個數是否為質數:
function prime (n: integer): Boolean;
var I: integer;
begin
for I:=2 to trunc(sqrt(n)) do
if n mod I=0 then begin
prime:=false; exit;
end;
prime:=true;
end;
B.判斷longint范圍內的數是否為素數(包含求50000以內的素數表):
procedure getprime;
var
i,j:longint;
p:array[1..50000] of boolean;
begin
fillchar(p,sizeof(p),true);
p[1]:=false;
i:=2;
while i< 50000 do begin
if p[i] then begin
j:=i*2;
while j< 50000 do begin
p[j]:=false;
inc(j,i);
end;
end;
inc(i);
end;
l:=0;
for i:=1 to 50000 do
if p[i] then begin
inc(l);pr[l]:=i;
end;
end;{getprime}
function prime(x:longint):integer;
var i:integer;
begin
prime:=false;
for i:=1 to l do
if pr[i] >=x then break
else if x mod pr[i]=0 then exit;
prime:=true;
end;{prime}
2.
3.
4.求最小生成樹
A.Prim算法:
procedure prim(v0:integer);
var
lowcost,closest:array[1..maxn] of integer;
i,j,k,min:integer;
begin
for i:=1 to n do begin
lowcost[i]:=cost[v0,i];
closest[i]:=v0;
end;
for i:=1 to n-1 do begin
{尋找離生成樹最近的未加入頂點k}
min:=maxlongint;
for j:=1 to n do
if (lowcost[j]< min) and (lowcost[j]< >0) then begin
min:=lowcost[j];
k:=j;
end;
lowcost[k]:=0; {將頂點k加入生成樹}
{生成樹中增加一條新的邊k到closest[k]}
{修正各點的lowcost和closest值}
for j:=1 to n do
if cost[k,j]< lwocost[j] then begin
lowcost[j]:=cost[k,j];
closest[j]:=k;
end;
end;
end;{prim}
B.Kruskal算法:(貪心)
按權值遞增順序刪去圖中的邊,若不形成回路則將此邊加入最小生成樹。
function find(v:integer):integer; {返回頂點v所在的集合}
var i:integer;
begin
i:=1;
while (i< =n) and (not v in vset[i]) do inc(i);
if i< =n then find:=i else find:=0;
end;
procedure kruskal;
var
tot,i,j:integer;
begin
for i:=1 to n do vset[i]:=[i];{初始化定義n個集合,第I個集合包含一個元素I}
p:=n-1; q:=1; tot:=0; {p為尚待加入的邊數,q為邊集指針}
sort;
{對所有邊按權值遞增排序,存于e[I]中,e[I].v1與e[I].v2為邊I所連接的兩個頂點的序號,e[I].len為第I條邊的長度}
while p >0 do begin
i:=find(e[q].v1);j:=find(e[q].v2);
if i< >j then begin
inc(tot,e[q].len);
vset[i]:=vset[i]+vset[j];vset[j]:=[];
dec(p);
end;
inc(q);
end;
writeln(tot);
end;
5.最短路徑
A.標號法求解單源點最短路徑:
var
a:array[1..maxn,1..maxn] of integer;
b:array[1..maxn] of integer; {b[i]指頂點i到源點的最短路徑}
mark:array[1..maxn] of boolean;
procedure bhf;
var
best,best_j:integer;
begin
fillchar(mark,sizeof(mark),false);
mark[1]:=true; b[1]:=0;{1為源點}
repeat
best:=0;
for i:=1 to n do
If mark[i] then {對每一個已計算出最短路徑的點}
for j:=1 to n do
if (not mark[j]) and (a[i,j] >0) then
if (best=0) or (b[i]+a[i,j]< best) then begin
best:=b[i]+a[i,j]; best_j:=j;
end;
if best >0 then begin
b[best_j]:=best;mark[best_j]:=true;
end;
until best=0;
end;{bhf}
B.Floyed算法求解所有頂點對之間的最短路徑:
procedure floyed;
begin
for I:=1 to n do
for j:=1 to n do
if a[I,j] >0 then p[I,j]:=I else p[I,j]:=0; {p[I,j]表示I到j的最短路徑上j的前驅結點}
for k:=1 to n do {枚舉中間結點}
for i:=1 to n do
for j:=1 to n do
if a[i,k]+a[j,k]< a[i,j] then begin
a[i,j]:=a[i,k]+a[k,j];
p[I,j]:=p[k,j];
end;
end;
C. Dijkstra 算法:
類似標號法,本質為貪心算法。
var
a:array[1..maxn,1..maxn] of integer;
b,pre:array[1..maxn] of integer; {pre[i]指最短路徑上I的前驅結點}
mark:array[1..maxn] of boolean;
procedure dijkstra(v0:integer);
begin
fillchar(mark,sizeof(mark),false);
for i:=1 to n do begin
d[i]:=a[v0,i];
if d[i]< >0 then pre[i]:=v0 else pre[i]:=0;
end;
mark[v0]:=true;
repeat {每循環一次加入一個離1集合最近的結點并調整其他結點的參數}
min:=maxint; u:=0; {u記錄離1集合最近的結點}
for i:=1 to n do
if (not mark[i]) and (d[i]< min) then begin
u:=i; min:=d[i];
end;
if u< >0 then begin
mark[u]:=true;
for i:=1 to n do
if (not mark[i]) and (a[u,i]+d[u]< d[i]) then begin
d[i]:=a[u,i]+d[u];
pre[i]:=u;
end;
end;
until u=0;
end;
D.計算圖的傳遞閉包
Procedure Longlink;
Var
T:array[1..maxn,1..maxn] of boolean;
Begin
Fillchar(t,sizeof(t),false);
For k:=1 to n do
For I:=1 to n do
For j:=1 to n do T[I,j]:=t[I,j] or (t[I,k] and t[k,j]);
End;
6.0-1背包問題(部分背包問題可有貪心法求解:計算Pi/Wi)
數據結構:
w[i]:第i個背包的重量;
p[i]:第i個背包的價值;
(1)0-1背包: 每個背包只能使用一次或有限次(可轉化為一次):
A.求最多可放入的重量。
NOIP2001 裝箱問題
有一個箱子容量為v(正整數,o≤v≤20000),同時有n個物品(o≤n≤30),每個物品有一個體積 (正整數)。要求從 n 個物品中,任取若千個裝入箱內,使箱子的剩余空間為最小。
l 搜索方法
procedure search(k,v:integer); {搜索第k個物品,剩余空間為v}
var i,j:integer;
begin
if v< best then best:=v;
if v-(s[n]-s[k-1]) >=best then exit; {s[n]為前n個物品的重量和}
if k< =n then begin
if v >w[k] then search(k+1,v-w[k]);
search(k+1,v);
end;
end;
l DP
F[I,j]為前i個物品中選擇若干個放入使其體積正好為j的標志,為布爾型。
實現:將最優化問題轉化為判定性問題
F[I,j]=f[i-1,j-w[i]] (w[I]< =j< =v) 邊界:f[0,0]:=true.
For I:=1 to n do
For j:=w[I] to v do F[I,j]:=f[I-1,j-w[I]];
優化:當前狀態只與前一階段狀態有關,可降至一維。
F[0]:=true;
For I:=1 to n do begin
F1:=f;
For j:=w[I] to v do
If f[j-w[I]] then f1[j]:=true;
F:=f1;
End;
B.求可以放入的最大價值。
F[I,j]=
C.求恰好裝滿的情況數。
(2)每個背包可使用任意次:
A.求最多可放入的重量。
狀態轉移方程為
f[I,j]=max{f[i-w[j]
B.求可以放入的最大價值。
USACO 1.2 Score Inflation
進行一次競賽,總時間T固定,有若干種可選擇的題目,每種題目可選入的數量不限,每種題目有一個ti(解答此題所需的時間)和一個si(解答此題所得的分數),現要選擇若干題目,使解這些題的總時間在T以內的前提下,所得的總分最大,求最大的得分。
*易想到:
f[i,j] = max { f [i- k*w[j], j-1] + k*v[j] } (0< =k< = i div w[j])
其中f[i,j]表示容量為i時取前j種背包所能達到的最大值。
*優化:
Begin
FillChar(problem,SizeOf(problem),0);
Assign(Input,'inflate.in');
Reset(Input);
Readln(M,N);
For i:=1 To N Do
With problem[i] Do
Readln(point,time);
Close(Input);
FillChar(f,SizeOf(f),0);
For i:=1 To M Do
For j:=1 To N Do
If i-problem[j].time >=0 Then
Begin
t:=problem[j].point+f[i-problem[j].time];
If t >f[i] Then f[i]:=t;
End;
Assign(Output,'inflate.out');
Rewrite(Output);
Writeln(f[M]);
Close(Output);
End.
C.求恰好裝滿的情況數。
Ahoi2001 Problem2
求自然數n本質不同的質數和的表達式的數目。
思路一,生成每個質數的系數的排列,在一一測試,這是通法。
procedure try(dep:integer);
var i,j:integer;
begin
cal; {此過程計算當前系數的計算結果,now為結果}
if now >n then exit; {剪枝}
if dep=l+1 then begin {生成所有系數}
cal;
if now=n then inc(tot);
exit;
end;
for i:=0 to n div pr[dep] do begin
xs[dep]:=i;
try(dep+1);
xs[dep]:=0;
end;
end;
思路二,遞歸搜索效率較高
procedure try(dep,rest:integer);
var i,j,x:integer;
begin
if (rest< =0) or (dep=l+1) then begin
if rest=0 then inc(tot);
exit;
end;
for i:=0 to rest div pr[dep] do
try(dep+1,rest-pr[dep]*i);
end;
思路三:可使用動態規劃求解
USACO1.2 money system
V個物品,背包容量為n,求放法總數。
轉移方程:
Procedure update;
var j,k:integer;
begin
c:=a;
for j:=0 to n do
if a[j] >0 then
for k:=1 to n div now do
if j+now*k< =n then inc(c[j+now*k],a[j]);
a:=c;
end;
{main}
begin
read(now); {讀入第一個物品的重量}
i:=0; {a[i]為背包容量為i時的放法總數}
while i< =n do begin
a[i]:=1; inc(i,now); end; {定義第一個物品重的整數倍的重量a值為1,作為初值}
for i:=2 to v do
begin
read(now);
update; {動態更新}
end;
writeln(a[n]);
7.排序算法
A.快速排序:
procedure sort(l,r:integer);
var i,j,mid:integer;
begin
i:=l;j:=r; mid:=a[(l+r) div 2]; {將當前序列在中間位置的數定義為中間數}
repeat
while a[i]< mid do inc(i); {在左半部分尋找比中間數大的數}
while mid< a[j] do dec(j);{在右半部分尋找比中間數小的數}
if i< =j then begin {若找到一組與排序目標不一致的數對則交換它們}
swap(a[i],a[j]);
inc(i);dec(j); {繼續找}
end;
until i >j;
if l< j then sort(l,j); {若未到兩個數的邊界,則遞歸搜索左右區間}
if i< r then sort(i,r);
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -