?? gen_h_bit.m
字號:
%function H_bit=gen_H_bit(n,k,m)
%this matrix is used to precomputer generate matrix for rs(n,k) code
%************** parameter **************
m=4;
k=7;
n=15;
demo=1;
t2=n-k;
prim_poly=primpoly(m);
%************** start ******************
%*** generator of parity check matrix on symbol-level ***
H_sym=gf(zeros(t2-1,n),m);
a=gf(2,m);
rom=[2,4,8,3,6,12,11,5,10,7,14,15,13,9,0];
for i=1:t2
xi=a^i;
for j=0:n-1
H_sym(i,j+1)=xi^(n-1-j);%in order of descending powers
end;
end;
%*** generator of parity check matrix on bit-level ***
prim_poly_bit=de2bi(prim_poly,m+1,'left-msb');
prim_mat=gf(zeros(m,m),m);
prim_mat(1,:)=prim_poly_bit(1,2:m+1);
for i=2:m
prim_mat(i,i-1)=1;
end;
H_bit=gf(zeros(t2*m,n*m),m);
H_sym_double=double(H_sym.x);
H_ele_mat=gf(zeros(m,m),m);
for i=1:t2
for j=1:n
H_ele_bit=de2bi(H_sym_double(i,j),m,'left-msb');
for ii=1:m
H_ele_mat=H_ele_mat+H_ele_bit(m-ii+1)*prim_mat^(ii-1);
%H_ele_mat=H_ele_mat+H_ele_bit(ii)*prim_mat^(ii-1);
end;
H_bit((i-1)*m+1:i*m,(j-1)*m+1:j*m)=H_ele_mat';
H_ele_mat=gf(zeros(m,m),m);
end;
end;
%************** test ************
%************** test on symbol level ************
%a=gf([5 1 3 4 2],m);%test code polynomial in order of descending powers
msg=gf(randint(1,k,2^m),m)
codeword=rsenc(msg,n,k);
Dc=codeword*H_sym';
save('H_sym_out','H_sym');
%************** test on bit level ************
ad=double(codeword.x);
a_mat=de2bi(ad,m,'left-msb');
a_bit=gf(zeros(1,n*m),m);
for i=1:n
a_bit(1,(i-1)*m+1:i*m)=gf(a_mat(i,:),m);
end;
Dcb=a_bit*H_bit';
FC=isempty(find(double(Dcb.x)));
if(demo) msg,codeword,H_sym,Dc,H_bit,Dcb,FC,end;
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -