亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? fdtd3d_upml.m

?? 這個身重要
?? M
?? 第 1 頁 / 共 2 頁
字號:
%***********************************************************************
%     3-D FDTD code with UPML absorbing boundary conditions
%***********************************************************************
%
%     Program author: Keely J. Willis, Graduate Student
%                     UW Computational Electromagnetics Laboratory
%                           Director: Susan C. Hagness
%                     Department of Electrical and Computer Engineering
%                     University of Wisconsin-Madison
%                     1415 Engineering Drive
%                     Madison, WI 53706-1691
%                     kjwillis@wisc.edu
%
%     Copyright 2005
%
%     This MATLAB M-file implements the finite-difference time-domain
%     solution of Maxwell's curl equations over a three-dimensional
%     Cartesian space lattice comprised of uniform cubic grid cells.
%     
%     The dimensions of the computational domain are 8.2 cm
%     (x-direction), 3.4 cm (y-direction), and 3.2 cm (z-direction).  
%     The grid is terminated with UPML absorbing boundary conditions.
%
%     An electric current source comprised of two collinear Jz components
%     (realizing a Hertzian dipole) excites a radially propagating wave.  
%     The current source is located in the center of the grid.  The 
%     source waveform is a differentiated Gaussian pulse given by 
%          J(t)=J0*(t-t0)*exp(-(t-t0)^2/tau^2), 
%     where tau=50 ps.  The FWHM spectral bandwidth of this zero-dc-
%     content pulse is approximately 7 GHz. The grid resolution 
%     (dx = 2 mm) was chosen to provide at least 10 samples per 
%     wavelength up through 15 GHz.
%
%     To execute this M-file, type "fdtd3D_UPML" at the MATLAB prompt.  
%
%     This code has been tested in the following Matlab environments:
%     Matlab version 6.1.0.450 Release 12.1 (May 18, 2001)
%     Matlab version 6.5.1.199709 Release 13 Service Pack 1 (August 4, 2003)
%     Matlab version 7.0.0.19920 R14 (May 6, 2004)
%     Matlab version 7.0.1.24704 R14 Service Pack 1 (September 13, 2004)
%     Matlab version 7.0.4.365 R14 Service Pack 2 (January 29, 2005)
%
%     Note: if you are using Matlab version 6.x, you may wish to make
%     one or more of the following modifications to this code: 
%       --uncomment line numbers 485 and 486
%       --comment out line numbers 552 and 561
%
%***********************************************************************

clear

%***********************************************************************
%     Fundamental constants
%***********************************************************************

cc=2.99792458e8;
muz=4.0*pi*1.0e-7;
epsz=1.0/(cc*cc*muz);
etaz=sqrt(muz/epsz);

%***********************************************************************
%     Material parameters 
%***********************************************************************

mur=1.0;
epsr=1.0;
eta=etaz*sqrt(mur/epsr);

%***********************************************************************
%     Grid parameters
%
%     Each grid size variable name describes the number of sampled points 
%     for a particular field component in the direction of that component.
%     Additionally, the variable names indicate the region of the grid 
%     for which the dimension is relevant.  For example, ie_tot is the 
%     number of sample points of Ex along the x-axis in the total 
%     computational grid, and jh_bc is the number of sample points of Hy 
%     along the y-axis in the y-normal UPML regions.
%
%***********************************************************************

ie=41;          % Size of main grid
je=17;
ke=16;
ih=ie+1;
jh=je+1;   
kh=ke+1;   

upml=10;        % Thickness of PML boundaries
ih_bc=upml+1;
jh_bc=upml+1;
kh_bc=upml+1;

ie_tot=ie+2*upml;          % Size of total computational domain
je_tot=je+2*upml;        
ke_tot=ke+2*upml;        
ih_tot=ie_tot+1;
jh_tot=je_tot+1;          
kh_tot=ke_tot+1;          

is=round(ih_tot/2);         % Location of z-directed current source
js=round(jh_tot/2);
ks=round(ke_tot/2);

%***********************************************************************
%     Fundamental grid parameters
%***********************************************************************

delta=0.002;
dt=delta*sqrt(epsr*mur)/(2.0*cc);
nmax=100;

%***********************************************************************
%     Differentiated Gaussian pulse excitation
%***********************************************************************

rtau=50.0e-12;
tau=rtau/dt;
ndelay=3*tau;
J0=-1.0*epsz;

%***********************************************************************
%     Initialize field arrays
%***********************************************************************

ex=zeros(ie_tot,jh_tot,kh_tot);
ey=zeros(ih_tot,je_tot,kh_tot);
ez=zeros(ih_tot,jh_tot,ke_tot);
dx=zeros(ie_tot,jh_tot,kh_tot);
dy=zeros(ih_tot,je_tot,kh_tot);
dz=zeros(ih_tot,jh_tot,ke_tot);

hx=zeros(ih_tot,je_tot,ke_tot);
hy=zeros(ie_tot,jh_tot,ke_tot);
hz=zeros(ie_tot,je_tot,kh_tot);
bx=zeros(ih_tot,je_tot,ke_tot);
by=zeros(ie_tot,jh_tot,ke_tot);
bz=zeros(ie_tot,je_tot,kh_tot);

%***********************************************************************
%     Initialize update coefficient arrays
%***********************************************************************

C1ex=zeros(size(ex));
C2ex=zeros(size(ex));
C3ex=zeros(size(ex));
C4ex=zeros(size(ex));
C5ex=zeros(size(ex));
C6ex=zeros(size(ex));

C1ey=zeros(size(ey));
C2ey=zeros(size(ey));
C3ey=zeros(size(ey));
C4ey=zeros(size(ey));
C5ey=zeros(size(ey));
C6ey=zeros(size(ey));

C1ez=zeros(size(ez));
C2ez=zeros(size(ez));
C3ez=zeros(size(ez));
C4ez=zeros(size(ez));
C5ez=zeros(size(ez));
C6ez=zeros(size(ez));

D1hx=zeros(size(hx));
D2hx=zeros(size(hx));
D3hx=zeros(size(hx));
D4hx=zeros(size(hx));
D5hx=zeros(size(hx));
D6hx=zeros(size(hx));

D1hy=zeros(size(hy));
D2hy=zeros(size(hy));
D3hy=zeros(size(hy));
D4hy=zeros(size(hy));
D5hy=zeros(size(hy));
D6hy=zeros(size(hy));

D1hz=zeros(size(hz));
D2hz=zeros(size(hz));
D3hz=zeros(size(hz));
D4hz=zeros(size(hz));
D5hz=zeros(size(hz));
D6hz=zeros(size(hz));

%***********************************************************************
%     Update coefficients, as described in Section 7.8.2.
%
%     In order to simplify the update equations used in the time-stepping
%     loop, we implement UPML update equations throughout the entire
%     grid.  In the main grid, the electric-field update coefficients of 
%     Equations 7.91a-f and the correponding magnetic field update
%     coefficients extracted from Equations 7.89 and 7.90 are simplified
%     for the main grid (free space) and calculated below.
%
%***********************************************************************

C1=1.0;
C2=dt;
C3=1.0;
C4=1.0/2.0/epsr/epsr/epsz/epsz;
C5=2.0*epsr*epsz;
C6=2.0*epsr*epsz;

D1=1.0;
D2=dt;
D3=1.0;
D4=1.0/2.0/epsr/epsz/mur/muz;
D5=2.0*epsr*epsz;
D6=2.0*epsr*epsz;

%***********************************************************************
%     Initialize main grid update coefficients
%***********************************************************************

C1ex(:,jh_bc:jh_tot-upml,:)=C1;     
C2ex(:,jh_bc:jh_tot-upml,:)=C2;
C3ex(:,:,kh_bc:kh_tot-upml)=C3;
C4ex(:,:,kh_bc:kh_tot-upml)=C4;
C5ex(ih_bc:ie_tot-upml,:,:)=C5;
C6ex(ih_bc:ie_tot-upml,:,:)=C6;

C1ey(:,:,kh_bc:kh_tot-upml)=C1;
C2ey(:,:,kh_bc:kh_tot-upml)=C2;
C3ey(ih_bc:ih_tot-upml,:,:)=C3;
C4ey(ih_bc:ih_tot-upml,:,:)=C4;
C5ey(:,jh_bc:je_tot-upml,:)=C5;
C6ey(:,jh_bc:je_tot-upml,:)=C6;

C1ez(ih_bc:ih_tot-upml,:,:)=C1;
C2ez(ih_bc:ih_tot-upml,:,:)=C2;
C3ez(:,jh_bc:jh_tot-upml,:)=C3;
C4ez(:,jh_bc:jh_tot-upml,:)=C4;
C5ez(:,:,kh_bc:ke_tot-upml)=C5;
C6ez(:,:,kh_bc:ke_tot-upml)=C6;

D1hx(:,jh_bc:je_tot-upml,:)=D1;
D2hx(:,jh_bc:je_tot-upml,:)=D2;
D3hx(:,:,kh_bc:ke_tot-upml)=D3;
D4hx(:,:,kh_bc:ke_tot-upml)=D4;
D5hx(ih_bc:ih_tot-upml,:,:)=D5;
D6hx(ih_bc:ih_tot-upml,:,:)=D6;

D1hy(:,:,kh_bc:ke_tot-upml)=D1;
D2hy(:,:,kh_bc:ke_tot-upml)=D2;
D3hy(ih_bc:ie_tot-upml,:,:)=D3;
D4hy(ih_bc:ie_tot-upml,:,:)=D4;
D5hy(:,jh_bc:jh_tot-upml,:)=D5;
D6hy(:,jh_bc:jh_tot-upml,:)=D6;

D1hz(ih_bc:ie_tot-upml,:,:)=D1;
D2hz(ih_bc:ie_tot-upml,:,:)=D2;
D3hz(:,jh_bc:je_tot-upml,:)=D3;
D4hz(:,jh_bc:je_tot-upml,:)=D4;
D5hz(:,:,kh_bc:kh_tot-upml)=D5;
D6hz(:,:,kh_bc:kh_tot-upml)=D6;

%***********************************************************************
%     Fill in PML regions
% 
%     PML theory describes a continuous grading of the material properties
%     over the PML region.  In the FDTD grid it is necessary to discretize
%     the grading by averaging the material properties over a grid cell 
%     width centered on each field component.  As an example of the 
%     implementation of this averaging, we take the integral of the 
%     continuous sigma(x) in the PML region
%   
%         sigma_i = integral(sigma(x))/delta
%   
%     where the integral is over a single grid cell width in x, and is 
%     bounded by x1 and x2.  Applying this to the polynomial grading of 
%     Equation 7.60a produces
%
%         sigma_i = (x2^(m+1)-x1^(m+1))*sigmam/(delta*(m+1)*d^m)
%
%     where sigmam is the maximum value of sigma as described by Equation 
%     7.62. 
%         
%     The definitions of x1 and x2 depend on the position of the field 
%     component within the grid cell.  We have either
%
%         x1 = (i-0.5)*delta,  x2 = (i+0.5)*delta
%  
%     or
%  

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产欧美一区二区精品忘忧草| 欧美色区777第一页| 国产精品午夜在线| 91九色最新地址| 免费观看在线综合| 国产三级精品在线| 欧美性受极品xxxx喷水| 麻豆专区一区二区三区四区五区| 日韩一区二区电影| 免费av成人在线| 欧美精品一区视频| 欧美日韩视频不卡| 高清不卡一区二区在线| 亚洲一区欧美一区| 国产视频一区二区三区在线观看 | 亚洲午夜久久久久久久久电影网 | 欧美aaaaa成人免费观看视频| 国产精品传媒入口麻豆| 欧美日韩高清影院| 成人免费av资源| 国产一区二区在线影院| 亚洲国产毛片aaaaa无费看 | 久久久国产午夜精品| 欧美无砖砖区免费| eeuss影院一区二区三区| 国产一区二区视频在线播放| 亚洲第一福利一区| 久久久久久久国产精品影院| 欧美成人性福生活免费看| 欧美亚洲日本一区| 一本到高清视频免费精品| 国产剧情在线观看一区二区| 亚洲电影欧美电影有声小说| 一区二区在线观看视频| 欧美国产亚洲另类动漫| 538在线一区二区精品国产| 99久久精品免费精品国产| 精品一区二区三区在线播放 | 亚洲精品第1页| 中文字幕亚洲一区二区va在线| 日韩三区在线观看| 91浏览器在线视频| 99久久国产综合色|国产精品| 国产精品综合视频| 成人黄色av电影| 高清免费成人av| 国产九色sp调教91| www.成人网.com| 丁香六月综合激情| 成人国产在线观看| 成人激情免费视频| 国产成人高清视频| 99综合影院在线| eeuss鲁片一区二区三区在线看| 精品一区二区三区在线播放| 国产麻豆视频一区二区| 国内精品伊人久久久久av影院| 国产精品一区二区黑丝| 韩国精品在线观看| 精品亚洲国内自在自线福利| 国内精品写真在线观看| 久久精品国产亚洲a| 视频一区中文字幕| 国产经典欧美精品| 成人高清免费观看| 欧美日韩在线播放| 欧美高清视频不卡网| 在线综合+亚洲+欧美中文字幕| 日韩欧美国产综合| 久久婷婷综合激情| 国产精品久久久久久久久动漫| 国产精品国产三级国产aⅴ中文| 中文字幕在线观看一区二区| 香蕉久久夜色精品国产使用方法| 午夜精品福利一区二区三区av | 久久日一线二线三线suv| 久久综合九色综合欧美亚洲| 国产亚洲女人久久久久毛片| 中文字幕中文在线不卡住| 亚洲1区2区3区视频| 美国欧美日韩国产在线播放| 国产精品一区2区| 99国产精品一区| 欧美日韩国产高清一区| 久久一夜天堂av一区二区三区| 国产精品萝li| 麻豆中文一区二区| 91在线无精精品入口| 欧美日韩激情一区二区三区| 日韩视频在线你懂得| 国产欧美精品日韩区二区麻豆天美| 中文字幕的久久| 午夜欧美2019年伦理| 国产精品自拍在线| 一本久久a久久免费精品不卡| 日本韩国欧美在线| 91精品国产综合久久久久久久久久| 国产精品水嫩水嫩| 性久久久久久久久| 99v久久综合狠狠综合久久| 69av一区二区三区| 国产三级一区二区三区| 亚洲成人免费在线| 国产精品自拍在线| 欧美美女一区二区在线观看| 欧美国产一区视频在线观看| 亚洲va天堂va国产va久| 91麻豆国产福利在线观看| 欧美变态tickle挠乳网站| 亚洲人吸女人奶水| 国模套图日韩精品一区二区| 色伊人久久综合中文字幕| 在线91免费看| 日韩一区在线播放| 精品一区二区三区久久| 成人天堂资源www在线| 91麻豆精品国产91久久久久久| 国产精品麻豆久久久| 国v精品久久久网| 91精品国产色综合久久ai换脸 | 日韩一区二区三区四区五区六区| 亚洲最色的网站| 豆国产96在线|亚洲| 欧美日韩小视频| 亚洲一区欧美一区| 成人高清伦理免费影院在线观看| 国产婷婷色一区二区三区四区| 午夜精品一区在线观看| 成人精品一区二区三区中文字幕| 欧美大白屁股肥臀xxxxxx| 亚洲一区二区三区中文字幕| 色丁香久综合在线久综合在线观看 | 亚洲与欧洲av电影| 国产乱子伦视频一区二区三区| 精品嫩草影院久久| 日日骚欧美日韩| 欧美一区二区三区人| 亚洲国产一区二区三区| 欧美曰成人黄网| 亚洲精品你懂的| va亚洲va日韩不卡在线观看| 日本一区二区在线不卡| 国产一区二区三区香蕉| 久久九九99视频| 国产成人亚洲综合色影视| 国产欧美久久久精品影院| 国产制服丝袜一区| 日韩精品在线看片z| 激情偷乱视频一区二区三区| 欧美一区二区三区在线| 久久黄色级2电影| 日韩欧美在线综合网| 日韩电影在线免费观看| 欧美成人欧美edvon| 精品一区二区三区在线播放| 欧美国产精品中文字幕| 国产成人精品影视| 亚洲视频资源在线| 不卡高清视频专区| 国产精品高清亚洲| 欧美丝袜丝nylons| 午夜在线电影亚洲一区| 欧美大片一区二区三区| 国产一区二区不卡老阿姨| 久久综合99re88久久爱| 国产精品99久| 国产精品国产馆在线真实露脸| 日本久久一区二区三区| 亚洲1区2区3区4区| 久久精品人人爽人人爽| 成人午夜视频在线观看| 亚洲国产日韩精品| 欧美一区二区三区系列电影| 婷婷久久综合九色综合绿巨人| 久久先锋影音av鲁色资源网| 成人在线一区二区三区| 亚洲成人激情社区| 日韩欧美一级片| 99精品黄色片免费大全| 午夜欧美一区二区三区在线播放| 制服丝袜成人动漫| 国产白丝精品91爽爽久久| 综合激情网...| 欧美哺乳videos| www.亚洲激情.com| 免费成人在线观看| 国产三级久久久| 日韩亚洲欧美中文三级| 波多野洁衣一区| 亚洲影视在线观看| 国产区在线观看成人精品| 色综合视频一区二区三区高清| 精品中文字幕一区二区| 中文字幕一区在线| 日韩情涩欧美日韩视频| 丁香婷婷综合激情五月色| 国产午夜精品理论片a级大结局| 欧美日韩亚州综合| 国产成人精品一区二| 免费在线成人网|