亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? svd.mht

?? SVD的有關(guān)資料
?? MHT
?? 第 1 頁 / 共 5 頁
字號:
width=3D174=20
      align=3DABSCENTER> and see that&nbsp; <BR>&nbsp;=20
      <UL>
        <LI>no matter what&nbsp;<IMG height=3D17 =
alt=3D[Graphics:svdgr76.gif]=20
        src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr76.gif" =
width=3D11=20
        align=3DABSCENTER> you choose&nbsp;<IMG height=3D17=20
        alt=3D[Graphics:svdgr77.gif]=20
        src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr77.gif" =
width=3D32=20
        align=3DABSCENTER> is a unit vector in&nbsp;<IMG height=3D17=20
        alt=3D[Graphics:svdgr78.gif]=20
        src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr78.gif" =
width=3D17=20
        align=3DABSCENTER>&nbsp;=20
        <LI><IMG height=3D18 alt=3D[Graphics:svdgr79.gif]=20
        src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr79.gif" =
width=3D201=20
        align=3DABSCENTER>.&nbsp; </LI></UL>&nbsp;=20
      <P>Since&nbsp;<IMG height=3D17 alt=3D[Graphics:svdgr80.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr80.gif" =
width=3D17=20
      align=3DABSCENTER> is a unit vector in&nbsp;<IMG height=3D17=20
      alt=3D[Graphics:svdgr81.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr81.gif" =
width=3D17=20
      align=3DABSCENTER> maximizing&nbsp;<IMG height=3D17 =
alt=3D[Graphics:svdgr82.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr82.gif" =
width=3D49=20
      align=3DABSCENTER> and&nbsp;<IMG height=3D17 =
alt=3D[Graphics:svdgr83.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr83.gif" =
width=3D32=20
      align=3DABSCENTER> is in&nbsp;<IMG height=3D17 =
alt=3D[Graphics:svdgr84.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr84.gif" =
width=3D17=20
      align=3DABSCENTER> for all&nbsp;<IMG height=3D17 =
alt=3D[Graphics:svdgr85.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr85.gif" =
width=3D11=20
      align=3DABSCENTER>, you know that&nbsp;<IMG height=3D17=20
      alt=3D[Graphics:svdgr86.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr86.gif" =
width=3D112=20
      align=3DABSCENTER> has a maximum at&nbsp;<IMG height=3D17=20
      alt=3D[Graphics:svdgr87.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr87.gif" =
width=3D32=20
      align=3DABSCENTER>.&nbsp; <BR>&nbsp;=20
      <P>This tells you&nbsp;<IMG height=3D17 =
alt=3D[Graphics:svdgr88.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr88.gif" =
width=3D60=20
      align=3DABSCENTER>.&nbsp; <BR>&nbsp;=20
      <P>Now compute:&nbsp; <BR><IMG height=3D17 =
alt=3D[Graphics:svdgr89.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr89.gif" =
width=3D112=20
      align=3DABSCENTER>&nbsp; <BR>&nbsp;=20
      <P><IMG height=3D17 alt=3D[Graphics:svdgr90.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr90.gif" =
width=3D106=20
      align=3DABSCENTER>&nbsp; <BR>&nbsp;=20
      <P><IMG height=3D18 alt=3D[Graphics:svdgr91.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr91.gif" =
width=3D333=20
      align=3DABSCENTER>&nbsp; <BR>&nbsp;=20
      <P><IMG height=3D38 alt=3D[Graphics:svdgr92.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr92.gif" =
width=3D341=20
      align=3DABSCENTER>&nbsp; <BR>&nbsp; <BR>&nbsp;=20
      <P>When you remember&nbsp;<IMG height=3D17 =
alt=3D[Graphics:svdgr93.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr93.gif" =
width=3D75=20
      align=3DABSCENTER>,&nbsp;<IMG height=3D18 =
alt=3D[Graphics:svdgr94.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr94.gif" =
width=3D75=20
      align=3DABSCENTER>, and&nbsp;<IMG height=3D18 =
alt=3D[Graphics:svdgr95.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr95.gif" =
width=3D75=20
      align=3DABSCENTER> are just numbers, you understand that its =
nothing more=20
      than tedious to compute:&nbsp;=20
      <P><IMG height=3D38 alt=3D[Graphics:svdgr96.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr96.gif" =
width=3D417=20
      align=3DABSCENTER>&nbsp; <BR>&nbsp;=20
      <P>Plugging in&nbsp;<IMG height=3D17 alt=3D[Graphics:svdgr97.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr97.gif" =
width=3D32=20
      align=3DABSCENTER> gives you&nbsp;<IMG height=3D18 =
alt=3D[Graphics:svdgr98.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr98.gif" =
width=3D126=20
      align=3DABSCENTER>.&nbsp; <BR>&nbsp;=20
      <P>But you already know that&nbsp;<IMG height=3D17=20
      alt=3D[Graphics:svdgr99.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr99.gif" =
width=3D60=20
      align=3DABSCENTER>, so after canceling the&nbsp;<IMG height=3D17=20
      alt=3D[Graphics:svdgr100.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr100.gif" =
width=3D11=20
      align=3DABSCENTER> you get&nbsp;<IMG height=3D18 =
alt=3D[Graphics:svdgr101.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr101.gif" =
width=3D85=20
      align=3DABSCENTER> which is just what you wanted.&nbsp;=20
      <P>
      <HR width=3D"100%">

      <H3><FONT color=3D#3333ff>Proof 3: Based on the spectral=20
      theorem</FONT></H3>This proof is slick IF YOU'VE ALREADY SEEN THE =
SPECTRAL=20
      THEOREM.&nbsp;=20
      <P>If you haven't seen the spectral theorem, then skip this =
proof.&nbsp;=20
      <P>Given&nbsp;<IMG height=3D17 alt=3D[Graphics:svdgr102.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr102.gif" =
width=3D72=20
      align=3DABSCENTER> and an orthonormal basis&nbsp;<IMG height=3D17=20
      alt=3D[Graphics:svdgr103.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr103.gif" =
width=3D89=20
      align=3DABSCENTER> of&nbsp;<IMG height=3D17 =
alt=3D[Graphics:svdgr104.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr104.gif" =
width=3D19=20
      align=3DABSCENTER> ,&nbsp;=20
      <P><IMG height=3D19 alt=3D[Graphics:svdgr105.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr105.gif" =
width=3D125=20
      align=3DABSCENTER>&nbsp;=20
      <P>iff&nbsp;<IMG height=3D19 alt=3D[Graphics:svdgr106.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr106.gif" =
width=3D136=20
      align=3DABSCENTER>&nbsp;=20
      <P>iff&nbsp;<IMG height=3D19 alt=3D[Graphics:svdgr107.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr107.gif" =
width=3D78=20
      align=3DABSCENTER>&nbsp;=20
      <P>iff&nbsp;<IMG height=3D17 alt=3D[Graphics:svdgr108.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr108.gif" =
width=3D89=20
      align=3DABSCENTER> are all eigenvectors of <IMG height=3D17=20
      alt=3D[Graphics:svdgr109.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr109.gif" =
width=3D26=20
      align=3DABSCENTER>.&nbsp;=20
      <P><B><FONT color=3D#3333ff>Conclusion:</FONT></B> The desired =
basis is=20
      guaranteed by spectral theorem since&nbsp;<IMG height=3D17=20
      alt=3D[Graphics:svdgr109.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr109.gif" =
width=3D26=20
      align=3DABSCENTER> is symmetric.&nbsp;=20
      <P>
      <HR width=3D"100%">

      <H3><A name=3D"Theorem SVD"></A><FONT color=3D#ff0000>Theorem: =
Every matrix=20
      has a singular value decomposition.&nbsp;</FONT></H3>The theorem =
above=20
      almost gives you the SVD for any matrix.&nbsp;=20
      <P>The only problem is that although the columns of the "hanger" =
matrix=20
      are pairwise perpendicular, they might not form a basis =
for&nbsp;<IMG=20
      height=3D17 alt=3D[Graphics:svdgr110.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr110.gif" =
width=3D21=20
      align=3DABSCENTER>.&nbsp;=20
      <P>For example, suppose for a 5x4 matrix&nbsp;<IMG height=3D18=20
      alt=3D[Graphics:svdgr111.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr111.gif" =
width=3D66=20
      align=3DABSCENTER> the procedure outlined above gives you:&nbsp;=20
      <CENTER><IMG height=3D75 alt=3D[Graphics:svdgr112.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr112.gif" =
width=3D237=20
      align=3DABSCENTER>.&nbsp;</CENTER>&nbsp;=20
      <P>To complete the decomposition, let&nbsp;<IMG height=3D20=20
      alt=3D[Graphics:svdgr113.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr113.gif" =
width=3D78=20
      align=3DABSCENTER> be an orthonormal basis for the three =
dimensional=20
      subspace of&nbsp;<IMG height=3D18 alt=3D[Graphics:svdgr114.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr114.gif" =
width=3D19=20
      align=3DABSCENTER> perpendicular to&nbsp;<IMG height=3D20=20
      alt=3D[Graphics:svdgr115.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr115.gif" =
width=3D69=20
      align=3DABSCENTER>.&nbsp; <BR>&nbsp;=20
      <P>Then write&nbsp;=20
      <CENTER><IMG height=3D75 alt=3D[Graphics:svdgr116.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr116.gif" =
width=3D237=20
      align=3DABSCENTER>&nbsp;</CENTER>
      <CENTER><IMG height=3D76 alt=3D[Graphics:svdgr117.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr117.gif" =
width=3D271=20
      align=3DABSCENTER>&nbsp;</CENTER>
      <CENTER>&nbsp;</CENTER>(1) The two sides agree on the =
basis&nbsp;<IMG=20
      height=3D17 alt=3D[Graphics:svdgr118.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr118.gif" =
width=3D102=20
      align=3DABSCENTER>.&nbsp; <BR>&nbsp; <BR>&nbsp;=20
      <P>This, finally, is a singular value decomposition for=20
      <I>A.&nbsp;</I>&nbsp;=20
      <P>
      <HR width=3D"100%">
      <BR>&nbsp;=20
      <P><FONT color=3D#3333ff><B>Comments</B>:&nbsp;</FONT>&nbsp; =
<BR>&nbsp;=20
      <UL>
        <LI>The diagonal entries of the stretcher matrix are called the=20
        "singular values of <I>A</I>".&nbsp; <BR>&nbsp;=20
        <LI>An extra row of zeros has been added to the stretcher matrix =
to=20
        produce the dimensions required for the multiplication. If =
<I>A</I> is m=20
        x n with&nbsp;<IMG height=3D17 alt=3D[Graphics:svdgr119.gif]=20
        src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr119.gif" =
width=3D34=20
        align=3DABSCENTER>, then rows will be deleted.&nbsp;=20
        <P>In either case, the dimensions of the stretcher matrix will =
always=20
        match the dimensions of <I>A</I>.&nbsp; <BR>&nbsp; </P>
        <LI>The decomposition shows that the action of every matrix can =
be=20
        described as a rotation followed by a stretch followed by =
another=20
        rotation.&nbsp; <BR>&nbsp;=20
        <LI>The proofs above are meant to show that every matrix has an=20
        SVD.&nbsp; You can compute SVD's for mx2 matrices by hand, but =
you=20
        should use a machine to compute SVD's for bigger matrices.=20
      </LI></UL>&nbsp;=20
      <P>
      <HR width=3D"100%">

      <H2><A name=3DExercises></A><FONT =
color=3D#ff0000>Exercises</FONT></H2>1.=20
      Above, you saw that if A is a&nbsp;<IMG height=3D17=20
      alt=3D[Graphics:svdgr120.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr120.gif" =
width=3D23=20
      align=3DABSCENTER> matrix&nbsp;<IMG height=3D18 =
alt=3D[Graphics:svdgr121.gif]=20
      src=3D"http://www.uwlax.edu/faculty/will/svd/svd/svdgr121.gif" =
width=3D66=20

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩毛片在线免费观看| 777奇米成人网| 亚洲欧美一区二区久久 | 欧美国产禁国产网站cc| 国产福利一区在线观看| 国产精品超碰97尤物18| 色噜噜久久综合| 亚洲福利一区二区| 91精品国产综合久久精品app| 日本大胆欧美人术艺术动态| 欧美一级xxx| 国产成人高清视频| 亚洲视频免费看| 欧美美女一区二区在线观看| 久久9热精品视频| 国产精品丝袜久久久久久app| 欧美在线一二三四区| 精油按摩中文字幕久久| 欧美韩国日本不卡| 欧美性大战xxxxx久久久| 九九九精品视频| 国产精品免费视频网站| 精品视频在线免费看| 麻豆精品一区二区三区| 国产精品家庭影院| 制服丝袜亚洲播放| 成人一区二区三区中文字幕| 亚洲男人的天堂网| 久久综合狠狠综合久久综合88| 99精品偷自拍| 激情五月婷婷综合网| 一区二区三区视频在线观看| 精品第一国产综合精品aⅴ| 99久久久久久| 蜜桃精品视频在线| 亚洲一二三四久久| 国产日产欧产精品推荐色| 欧美日韩国产中文| 成人动漫在线一区| 麻豆精品视频在线观看免费| 一区二区三区日韩欧美精品| 久久久电影一区二区三区| 欧美人动与zoxxxx乱| 成人小视频免费在线观看| 日本成人在线看| 一二三区精品视频| 国产精品久久久爽爽爽麻豆色哟哟 | 麻豆国产欧美一区二区三区| 亚洲视频免费在线| 久久精品欧美一区二区三区麻豆| 777色狠狠一区二区三区| 色综合激情五月| 国产精品亚洲午夜一区二区三区 | 正在播放亚洲一区| 91福利视频网站| 成人精品一区二区三区中文字幕| 麻豆中文一区二区| 午夜精品福利一区二区蜜股av| 国产精品久线在线观看| 久久久久久久久免费| 日韩欧美一级二级| 欧美一级二级在线观看| 欧美久久久久免费| 在线一区二区三区四区| 99精品欧美一区二区蜜桃免费| 国产一区二区精品久久| 狠狠色丁香久久婷婷综| 久久99国产精品久久99果冻传媒| 亚洲国产一二三| 亚洲3atv精品一区二区三区| 一区二区三区精品视频| 伊人婷婷欧美激情| 一区二区三区四区在线播放| 有码一区二区三区| 亚洲一区二区三区中文字幕在线| 一区二区三区欧美亚洲| 亚洲男同1069视频| 亚洲一区二区视频在线| 午夜精品久久久久影视| 亚洲一二三区在线观看| 日韩精品一区第一页| 日韩中文欧美在线| 久久99精品久久久久| 激情久久五月天| 国产精品夜夜嗨| www.日韩精品| 在线观看91精品国产入口| 欧美三级电影在线观看| 91精品国产免费| 久久综合av免费| 国产无人区一区二区三区| 中文字幕av资源一区| 亚洲人成网站色在线观看| 一区二区激情小说| 免费在线一区观看| 国产精品69毛片高清亚洲| gogo大胆日本视频一区| 欧洲国内综合视频| 日韩欧美国产精品| 久久品道一品道久久精品| 国产精品视频你懂的| 亚洲六月丁香色婷婷综合久久| 亚洲国产日产av| 激情偷乱视频一区二区三区| 国产成人精品亚洲午夜麻豆| 成人福利视频网站| 欧美欧美午夜aⅴ在线观看| 精品国免费一区二区三区| 国产欧美精品日韩区二区麻豆天美| 欧美激情一区二区三区在线| 亚洲狠狠丁香婷婷综合久久久| 美女视频一区二区三区| eeuss鲁一区二区三区| 欧美色涩在线第一页| 久久亚洲私人国产精品va媚药| 一区视频在线播放| 日韩av电影免费观看高清完整版在线观看| 精品一区二区三区视频在线观看| 成人高清视频在线| 欧美一区二区三区思思人| 国产精品久久久久aaaa樱花 | 91美女片黄在线| 欧美精品一区二区在线播放| 亚洲乱码中文字幕| 国产乱码精品1区2区3区| 欧洲精品一区二区三区在线观看| 2023国产精华国产精品| 一区二区三区国产精品| 国产精品一区在线观看乱码 | 精品久久久久久无| 亚洲综合精品自拍| 国产福利一区二区三区在线视频| 欧美日韩一二三区| 成人免费一区二区三区视频 | 97久久超碰精品国产| 日韩精品一区国产麻豆| 亚洲主播在线播放| 99久久精品免费| 精品国产乱码久久久久久蜜臀| 亚洲激情校园春色| 成人免费av在线| 精品91自产拍在线观看一区| 亚洲成a人片在线观看中文| 不卡一区中文字幕| 国产视频一区不卡| 美脚の诱脚舐め脚责91 | 色婷婷综合中文久久一本| 国产丝袜在线精品| 极品少妇xxxx精品少妇偷拍| 欧美日韩黄色影视| 一级做a爱片久久| 91美女精品福利| 亚洲丝袜另类动漫二区| 国产白丝精品91爽爽久久| 欧美mv日韩mv国产网站| 免费日本视频一区| 欧美一区二区人人喊爽| 日精品一区二区| 欧美精品一级二级三级| 亚洲一区二区三区四区五区中文 | 欧美猛男gaygay网站| 一个色综合网站| 欧洲视频一区二区| 亚洲一级二级在线| 欧美日本在线播放| 午夜精品一区在线观看| 欧美日韩一二三区| 五月婷婷欧美视频| 制服丝袜亚洲网站| 麻豆极品一区二区三区| 精品国偷自产国产一区| 国产精品一区一区| 国产女同互慰高潮91漫画| 国产伦理精品不卡| 欧美国产日韩亚洲一区| av电影天堂一区二区在线| 日韩毛片精品高清免费| 一本色道久久综合亚洲精品按摩 | 国产午夜精品一区二区三区视频| 国产乱子轮精品视频| 欧美韩国日本不卡| 91视频在线观看| 亚洲精品视频在线| 欧美日韩免费高清一区色橹橹| 亚洲1区2区3区4区| 欧美大白屁股肥臀xxxxxx| 国产精品911| 亚洲婷婷综合色高清在线| 欧洲中文字幕精品| 麻豆91在线观看| 国产欧美日韩综合精品一区二区| 成人av资源在线观看| 亚洲综合成人在线视频| 欧美一区日韩一区| 国产一区久久久| 自拍偷拍国产亚洲| 欧美一区二区三区公司| 国产成人av一区二区三区在线| 亚洲色图在线播放| 欧美日韩高清一区二区|