亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? eqberdemo.html

?? 均衡技術的仿真實現
?? HTML
?? 第 1 頁 / 共 2 頁
字號:
      <p>Run the MLSE equalizer with an imperfect channel estimate, and plot the BER and the burst error performance for each data         block.  These results align fairly closely with the ideal MLSE results.  (The channel estimation algorithm is highly dependent         on the data, such that an FFT of a transmitted data block has no nulls.)  Note how the estimated channel plots compare with         the actual channel spectrum plot.      </p>      <p>See <a href="eqber_mlse.html">eqber_mlse</a> for a listing of the simulation code for the MLSE equalizers.      </p><pre class="codeinput">mlseType = <span class="string">'imperfect'</span>;eqber_mlse;</pre><img vspace="5" hspace="5" src="eqberdemo_11.png"> <img vspace="5" hspace="5" src="eqberdemo_12.png"> <img vspace="5" hspace="5" src="eqberdemo_13.png"> <p class="footer">Copyright 1996-2004 The MathWorks, Inc.<br>         Published with MATLAB&reg; 7.0<br></p>      <!--##### SOURCE BEGIN #####%% BER Performance of Several Equalizer Types% This script shows the BER performance of several types of equalizers in a% static channel with a null in the passband.  The script constructs and% implements a linear equalizer object and a decision feedback equalizer (DFE)% object.  It also initializes and invokes a maximum likelihood sequence% estimation (MLSE) equalizer.  The MLSE equalizer is first invoked with perfect% channel knowledge, then with a straightforward but imperfect channel% estimation technique.%% As the simulation progresses, it updates a BER plot for comparative analysis% between the equalization methods.  It also shows the signal spectra of the% linearly equalized and DFE equalized signals.  It also shows the relative% burstiness of the errors, indicating that at low BERs, both the MLSE algorithm% and the DFE algorithm suffer from error bursts.  In particular, the DFE error% performance is burstier with detected bits fed back than with correct bits fed% back.  Finally, during the "imperfect" MLSE portion of the simulation, it% shows and dynamically updates the estimated channel response.%% This script relies on several other scripts and functions to perform link% simulations over a range of Eb/No values.  These files are as follows:%% <eqber_adaptive.html eqber_adaptive> - a script that runs link% simulations for linear and DFE equalizers%% <eqber_mlse.html eqber_mlse> - a script that runs link simulations% for ideal and imperfect MLSE equalizers%% <eqber_siggen.html eqber_siggen>   - a script that generates a BPSK% signal with no pulse shaping, then processes it through the channel and adds% noise%% eqber_graphics - a function that generates and updates plots showing the% performance of the linear, DFE, and MLSE equalizers.  Type "edit% eqber_graphics" at the MATLAB command line to view this file.%% The scripts eqber_adaptive and eqber_mlse illustrate how to use adaptive and% MLSE equalizers across multiple blocks of data such that state information is% retained between data blocks.%% To experiment with this demo, you can change such parameters as the channel% impulse response, the number of equalizer tap weights, the recursive least% squares (RLS) forgetting factor, the least mean square (LMS) step size, the% MLSE traceback length, the error in estimated channel length, and the maximum% number of errors collected at each Eb/No value.%   Copyright 1996-2004 The MathWorks, Inc.%   $Revision: 1.1.4.1 $  $Date: 2004/06/30 23:03:16 $%% Signal and channel parameters% Set parameters related to the signal and channel.  Use BPSK without any pulse% shaping, and a 5-tap real-valued symmetric channel impulse response.  (See% section 10.2.3 of Digital Communications by J. Proakis for more details on the% channel.)  Set initial states of data and noise generators.  Set the Eb/No% range.% System simulation parametersFs      = 1;      % sampling frequency (notional)nBits   = 2048;   % number of BPSK symbols per vectormaxErrs = 50;     % target number of errors at each Eb/NomaxBits = 1e8;    % maximum number of symbols at each Eb/No% Modulated signal parametersM          = 2;            % order of modulationRs         = Fs;           % symbol ratenSamp      = Fs/Rs;        % samples per symbolRb         = Rs * log2(M); % bit ratedataState  = 999983;       % initial state of data generator% Channel parameterschnl       = [0.227 0.460 0.688 0.460 0.227]';  % channel impulse responsechnlLen    = length(chnl);      % channel length, in samplesEbNo       = 0:14;              % in dBBER        = zeros(size(EbNo)); % initialize valuesnoiseState = 999917;            % initial state of noise generator%% Adaptive equalizer parameters% Set parameter values for the linear and DFE equalizers.  Use a 31-tap linear% equalizer, and a DFE with 15 feedforward and feedback taps.  Use the recursive% least squares (RLS) algorithm for the first block of data to ensure rapid tap% convergence.  Use the least mean square (LMS) algorithm thereafter to ensure% rapid execution speed.% Linear equalizer parametersnWts         = 31;       % number of weightsalgType1     = 'rls';    % RLS algorithm for first data block at each Eb/NoforgetFactor = 0.999999; % parameter of RLS algorithmalgType2     = 'lms';    % LMS algorithm for remaining data blocksstepSize     = 0.00001;  % parameter of LMS algorithm% DFE parameters - use same update algorithms as linear equalizernFwdWts      = 15;       % number of feedforward weights nFbkWts      = 15;       % number of feedback weights%% MLSE equalizer and channel estimation parameters, and initial visualization% Set the parameters of the MLSE equalizer.  Use a traceback length of six times% the length of the channel impulse response.  Initialize the equalizer states.% Set the equalization mode to "continuous", to enable seamless equalization% over multiple blocks of data.  Use a cyclic prefix in the channel esimation% technique, and set the length of the prefix.  Assume that the estimated length% of the channel impulse response is one sample longer than the actual length.% MLSE equalizer parameterstbLen      = 30;                 % MLSE equalizer traceback lengthnumStates  = M^(chnlLen-1);      % number of trellis states[mlseMetric, mlseStates, mlseInputs] = deal([]);const      = pskmod(0:M-1, M);   % signal constellationmlseType   = 'ideal';            % perfect channel estimates at firstmlseMode   = 'cont';             % no MLSE resets% Channel estimation parameterschnlEst = chnl;         % perfect estimation initiallyprefixLen = 2*chnlLen;  % cyclic prefix lengthexcessEst = 1;          % length of estimated channel impulse response                        % beyond the true length% Initialize the graphics for the simulation.  Plot the unequalized channel% frequency response, and the BER of an ideal BPSK system.idealBER = berawgn(EbNo, 'psk', M, 'nondiff');[hBER, hLegend, legendString, hLinSpec, hDfeSpec, hErrs, ...    hText1, hText2, hFit, hEstPlot] = eqber_graphics('init', chnl, EbNo, ...                                               idealBER, nBits);%% Construct RLS and LMS linear and DFE equalizer objects.% The RLS update algorithm is used to initially set the weights, and the LMS% algorithm is used thereafter for speed purposes.alg1 = eval([algType1 '(' num2str(forgetFactor) ')']);linEq1 = lineareq(nWts, alg1);alg2 = eval([algType2 '(' num2str(stepSize) ')']);linEq2 = lineareq(nWts, alg2);[linEq1.RefTap, linEq2.RefTap] = ...    deal(round(nWts/2));    % Set reference tap to center tap[linEq1.ResetBeforeFiltering, linEq2.ResetBeforeFiltering] = ...    deal(0);                % Maintain continuity between iterationsdfeEq1 = dfe(nFwdWts, nFbkWts, alg1);dfeEq2 = dfe(nFwdWts, nFbkWts, alg2);[dfeEq1.RefTap, dfeEq2.RefTap] = ...    deal(round(nFwdWts/2)); % Set reference tap to center forward tap[dfeEq1.ResetBeforeFiltering, dfeEq2.ResetBeforeFiltering] = ...    deal(0);                % Maintain continuity between iterations%% Linear equalizer% Run the linear equalizer, and plot the equalized signal spectrum, the BER, and% the burst error performance for each data block.  Note that as the Eb/No% increases, the linearly equalized signal spectrum has a progressively deeper% null.  This highlights the fact that a linear equalizer must have many more% taps to adequately equalize a channel with a deep null.  Note also that the% errors occur with small inter-error intervals, which is to be expected at such% a high error rate.%% See <eqber_adaptive.html eqber_adaptive> for a listing of the simulation code% for the adaptive equalizers.firstRun = true;  % flag to ensure known initial states for noise and dataeqType = 'linear';eqber_adaptive;%% Decision feedback equalizer% Run the DFE, and plot the equalized signal spectrum, the BER, and the burst% error performance for each data block.  Note that the DFE is much better able% to mitigate the channel null than the linear equalizer, as shown in the% spectral plot and the BER plot.  The plotted BER points at a given Eb/No value% are updated every data block, so they move up or down depending on the number% of errors collected in that block.  Note also that the DFE errors are somewhat% bursty, due to the error propagation caused by feeding back detected bits% instead of correct bits. The burst error plot shows that as the BER decreases,% a significant number of errors occurs with an inter-error arrival of five bits% or less.  (If the DFE equalizer were run in training mode at all times, the% errors would be far less bursty.)  %% For every data block, the plot also indicates the average inter-error interval% if those errors were randomly occurring.%% See <eqber_adaptive.html eqber_adaptive> for a listing of the simulation code% for the adaptive equalizers.eqType = 'dfe';eqber_adaptive; %% Ideal MLSE equalizer, with perfect channel knowledge% Run the MLSE equalizer with a perfect channel estimate, and plot the BER and% the burst error performance for each data block.  Note that the errors occur% in an extremely bursty fashion.  Observe, particularly at low BERs, that the% overwhelming percentage of errors occur with an inter-error interval of one or% two bits.%% See <eqber_mlse.html eqber_mlse> for a listing of the simulation code% for the MLSE equalizers.eqType = 'mlse';mlseType = 'ideal';eqber_mlse;%% MLSE equalizer with an imperfect channel estimate% Run the MLSE equalizer with an imperfect channel estimate, and plot the BER% and the burst error performance for each data block.  These results align% fairly closely with the ideal MLSE results.  (The channel estimation algorithm% is highly dependent on the data, such that an FFT of a transmitted data block% has no nulls.)  Note how the estimated channel plots compare with the actual% channel spectrum plot.%% See <eqber_mlse.html eqber_mlse> for a listing of the simulation code% for the MLSE equalizers.mlseType = 'imperfect';eqber_mlse;##### SOURCE END #####-->   </body></html>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲男同性恋视频| 中文字幕不卡在线| 不卡在线视频中文字幕| 日本成人中文字幕| 国产精品久久一卡二卡| 日韩欧美一卡二卡| 91一区二区在线观看| 国产一区二区主播在线| 亚洲6080在线| 一区二区三区四区精品在线视频 | 婷婷亚洲久悠悠色悠在线播放 | 精品久久久久久综合日本欧美| 99精品一区二区三区| 久久99久久精品| 亚洲成人7777| 一区二区三区国产| 中文字幕一区二区日韩精品绯色| 欧美不卡激情三级在线观看| 欧美网站一区二区| 成人国产精品免费观看动漫| 久久99精品久久久| 人人爽香蕉精品| 亚洲电影中文字幕在线观看| 综合久久给合久久狠狠狠97色| 亚洲精品大片www| 亚洲欧洲成人自拍| 国产精品成人一区二区艾草 | 国产成人av影院| 久久99国产精品免费| 男男成人高潮片免费网站| 无码av免费一区二区三区试看| 亚洲精品伦理在线| 亚洲色图在线看| 亚洲精品日日夜夜| 怡红院av一区二区三区| 亚洲欧美日韩综合aⅴ视频| 国产精品短视频| 亚洲欧美日韩中文字幕一区二区三区| 中文字幕不卡三区| 中文一区二区完整视频在线观看 | 国产精品久线在线观看| 中文字幕av一区二区三区高| 亚洲国产激情av| 国产精品国产三级国产专播品爱网| 日本一区二区三区久久久久久久久不 | 99久久精品国产麻豆演员表| 国产精品另类一区| 欧美96一区二区免费视频| 欧美白人最猛性xxxxx69交| 欧美群妇大交群的观看方式| 欧美午夜精品电影| 欧美日韩国产在线播放网站| 日本aⅴ免费视频一区二区三区| 亚洲午夜精品网| 亚洲国产日韩综合久久精品| 午夜精品一区二区三区电影天堂 | 日韩视频在线永久播放| 7777精品伊人久久久大香线蕉经典版下载 | 一区二区三区四区精品在线视频 | 日韩一区二区视频| 精品国产乱子伦一区| 久久色成人在线| 国产亚洲精久久久久久| 国产精品女主播av| 亚洲三级免费电影| 午夜精品一区二区三区电影天堂 | 精品国产伦理网| 国产日韩av一区| 国产精品福利一区| 夜夜操天天操亚洲| 日韩中文字幕亚洲一区二区va在线| 免费成人av在线| 成人深夜视频在线观看| 欧美亚洲精品一区| 日韩精品最新网址| 国产精品久久久久影院| 亚洲在线一区二区三区| 韩日精品视频一区| av激情成人网| 欧美日韩视频一区二区| 国产三级一区二区| 亚洲专区一二三| 麻豆精品在线观看| 成人激情开心网| 91精品国产麻豆国产自产在线| 久久视频一区二区| 亚洲一区二区av在线| 麻豆精品国产传媒mv男同 | 欧美三级乱人伦电影| 欧美成人vr18sexvr| 亚洲三级电影全部在线观看高清| 视频一区在线视频| 不卡一卡二卡三乱码免费网站| 欧美日韩一区二区电影| 国产日韩精品久久久| 亚洲国产成人av网| 岛国一区二区三区| 欧美一区二区女人| 一区二区三区 在线观看视频| 国产一区二区三区日韩| 精品视频在线免费看| 国产精品沙发午睡系列990531| 秋霞电影一区二区| 精品视频免费在线| 亚洲精品视频在线看| 国产成人免费在线视频| 日韩亚洲国产中文字幕欧美| 亚洲麻豆国产自偷在线| 韩国在线一区二区| 日韩欧美国产精品| 午夜亚洲国产au精品一区二区| 成人免费高清视频| 精品欧美黑人一区二区三区| 亚洲国产精品尤物yw在线观看| 成人深夜在线观看| 久久久五月婷婷| 久久精品国内一区二区三区 | 久久精品在这里| 麻豆91精品视频| 91麻豆精品国产自产在线| 一区二区在线观看视频在线观看| 从欧美一区二区三区| 精品第一国产综合精品aⅴ| 日韩av中文字幕一区二区三区| 91在线视频免费观看| 国产欧美日韩三级| 国产999精品久久| 久久网站最新地址| 狠狠色丁香婷综合久久| 精品精品国产高清一毛片一天堂| 性欧美疯狂xxxxbbbb| 欧美色图一区二区三区| 亚洲综合激情另类小说区| 欧洲在线/亚洲| 亚洲妇熟xx妇色黄| 欧美日韩国产三级| 丝袜亚洲精品中文字幕一区| 精品视频全国免费看| 爽爽淫人综合网网站| 欧美一区二区三区在线视频| 奇米精品一区二区三区四区| 日韩欧美激情在线| 黄页视频在线91| 国产嫩草影院久久久久| 成人高清av在线| 亚洲欧洲另类国产综合| 色天使色偷偷av一区二区| 亚洲精品ww久久久久久p站| 欧美性感一类影片在线播放| 亚洲午夜免费福利视频| 欧美一级艳片视频免费观看| 美女脱光内衣内裤视频久久网站 | 亚洲一区在线看| 日韩一区二区在线免费观看| 免费观看在线综合| 久久久久久久久久久久久夜| 成人小视频免费在线观看| 亚洲色大成网站www久久九九| 91猫先生在线| 日韩成人精品在线观看| 欧美一区二区三区影视| 国产传媒日韩欧美成人| 亚洲欧洲日韩综合一区二区| 欧美日韩免费观看一区二区三区| 亚洲国产精品久久久久秋霞影院 | 欧美在线免费视屏| 日韩**一区毛片| 久久理论电影网| 91在线观看免费视频| 视频一区视频二区在线观看| 欧美va亚洲va| 99在线热播精品免费| 午夜精品福利一区二区三区蜜桃| 亚洲精品在线免费播放| 成人高清在线视频| 日韩高清不卡一区| 欧美精品一区二区三区很污很色的| 99天天综合性| 欧美aⅴ一区二区三区视频| 国产欧美日韩视频一区二区| 欧洲人成人精品| 国产精华液一区二区三区| 亚洲欧美日韩一区二区三区在线观看| 91精品国产一区二区人妖| 成人午夜在线视频| 美女视频免费一区| 中文av一区二区| 日韩一区二区三区视频在线 | 欧美日韩视频在线观看一区二区三区| 久久精品国产99| 一区二区三区精品| 国产欧美一区二区三区鸳鸯浴 | 欧美丝袜自拍制服另类| 国产一区二区三区香蕉| 午夜精品视频在线观看| 136国产福利精品导航| 2017欧美狠狠色| 欧美一区二区三区小说| 日本高清不卡aⅴ免费网站| 国产成人在线观看|