?? univopt.m
字號:
function [NVR, ARp, ARt, sARp, sARt] = univopt(y, par, tmodel, nvr, tar, output, Interv);
% UNIVOPT0 Hyper-parameter and Auto-Regressive (AR) polynomial
% estimation for Trend + AR type models
%
% [nvr,ARp,ARt,ARpse,ARtse]=univopt(y,p,TVP,nvr0,tar,out,Int)
%
% y: Time series (*)
% p: AR order for Perturbations (vector) (0-none)
% TVP: Integration order for Trend (0-RW/IAR, 1-IRW/DIAR) (1)
% nvr0: Initial NVR hyper-parameter for Trend (1)
% tar: AR order for Trend (vector) (0-none)
% out: Tabular output on (1-default) or off
% Int: Locations of variance intervention points (vector 1/0) (0)
%
% nvr: Estimated NVR hyper-parameter for Trend
% ARp: AR polynomial for Perturbations (no initial unity term)
% ARt: AR polynomial for Trend (no initial unity term)
% ARpse: Standard Errors of AR parameters for Perturbations
% ARtse: Standard Errors of AR parameters for Trend
%
% The variations possible with this function are:
% Trend only: RW; IRW; IAR; DIAR.
% Perturbations only: AR.
% Both: RW+AR; IRW+AR; IAR+AR; DIAR+AR.
%
% Example: [nvr, ARp]=univopt(y, [1:20], 2, 1e-3)
% IRW+AR. Estimate the optimal NVR for an IRW trend (nvr0=1e-3)
% together with the polynomial of an AR(20) perturbations model
%
% See also UNIV, AIC, MAR
% Copyright (c) 2006 by CRES, Lancaster University, United Kingdom
% Authors : Peter Young, Wlodek Tych, Diego Pedregal, James Taylor
% The time series vector y (column) is specified by the user. The
% function automatically handles missing values in y. In fact, y
% may be appended with additional NaNs to forecast or backcast
% beyond the original series. The remaining input arguments are
% optional, although most should be normally specified as outputs
% from the univopt function.
%
% The first input argument p is a vector indicating the lags that
% must be used in the auto-regression for the perturbational
% component about the trend. TVP is a scalar specifying the
% model associated with the trend. Choices include a RW/AR(1)
% model by default (0) or a IRW/SRW model (1). nvr0 is the
% NVR value for the trend. It is normally constrained by the user
% to avoid identification problems. Although univopt provides
% default values, in most practical instances these input arguments
% should be specified by the user, since it is unlikely that the
% defaults will yield a sensible model for a given data set.
%
% When a IAR/DIAR trend is required, the trend AR model order
% is governed by tar which utilizes the same syntax as p above.
% For IAR trends set TVP to 0, while for DIAR trends set TVP to
% 1; in both these cases, tar is the vector of indices for the AR
% trend polynomial. The next input argument, out, specifies
% tabular display or the results (1) or not (0). Finally, Int allows
% for sharp (discontinuous) variance intervention for local changes
% in the trend at the user supplied intervention points. These need
% to be defined either manually or by some detection method for
% sharp local changes. Here, Int should take the same dimensions
% as y, with positive values indicating variance intervention
% required.
%
% The function returns nvr, that is the corrected value of the trend
% NVR based on nvr0 and the final estimate of the innovations
% variance. ARp and ARt are the AR polynomials for the
% perturbations and the trend AR models, when required. ARpse
% and ARtse are the standard errors of the perturbation and trend
% AR parameters.
if nargin==0
disp(' ')
disp(' UNIVOPT0 Hyper-parameter and Auto-Regressive (AR) polynomial')
disp(' estimation for Trend + AR type models')
disp(' ')
disp(' [nvr,ARp,ARt,ARpse,ARtse]=univopt(y,p,TVP,nvr0,tar,out,Int)')
disp(' ')
return
end
if nargin<1, y=[]; end
if nargin<2, par=[]; end
if nargin<3, tmodel=[]; end
if nargin<4, nvr=[]; end
if nargin<5, tar=[]; end
if nargin<6, output=[]; end
if nargin<7, Interv=[]; end
[NVR, ARp, ARt, sARp, sARt]=univopt0(y, par, tmodel, nvr, tar, output, Interv);
% end of m-file
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -