亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? sdpdemo.m

?? 動態時間序列分析工具包.包括有ARMA,harmonic model,kalman filter等方法
?? M
字號:
% SDPDEMO  Captain Toolbox demonstration
%
% State Dependent Parameter (SDP) analysis of simulated data
%
% See also SDP

% Copyright (c) 2006 by CRES, Lancaster University, United Kingdom
% Authors : Peter Young, Wlodek Tych, Diego Pedregal, James Taylor
% Additional author: Paul McKenna

clear all
close all
format compact
echo on

clc
% SDPDEMO  Captain Toolbox demonstration
 
% This script demonstrates the use of the State Dependent
% Parameter (SDP) routine for obtaining a non-parametric
% state dependent model from a simulated dataset.
 
% For this example, the output is formed from the sum of
% three inputs (u1, u2 and u3), each multiplied by its own 
% state dependent parameter (a, b and c).
 
% y(k) = a(k) * u1(k)  +  b(k) * u2(k)  +  c(k) * u3(k)  
 
% The SDPs themselves are each dependent on the given states 
% (x1, x2 and x3). In the following example, they are simply
% white noise signals with different seeds. If no dependent
% states are supplied by the user, the algorithm assumes that
% each parameter is dependent upon its associated input regressor,
% (so that in this example a would be dependent on u1, b on u2).
 
% --------------------------------------------------------
%                 Hit any key to continue
% --------------------------------------------------------
pause
 
% length of the simulated data set
 
n=1500;
 
% dependent states
 
randn('seed',0); x1=randn(n,1);  % for first regressor
randn('seed',1); x2=randn(n,1);  % for second regressor
randn('seed',2); x3=randn(n,1);  % for third regressor
x=[x1 x2 x3];
 
% state dependent parameters
 
a=(0.5*x1)+3;       % linear state dependency for the first SDP
b=(x2.^2)+1;        % quadratic state dependency for the second SDP
c=(sin(x3*pi/2))+2; % sinusoidal state dependency for the third SDP
 
% --------------------------------------------------------
%                 Hit any key to continue
% --------------------------------------------------------
pause
 
% The inputs signals are more white noise sequences.
 
randn('seed',3); u1=randn(n,1);  % first input
randn('seed',4); u2=randn(n,1);  % second input
randn('seed',5); u3=randn(n,1);  % third input
z=[u1 u2 u3];
 
% The output is then generated from the inputs and their
% associated state dependent parameters.
 
y=(a.*u1)+(b.*u2)+(c.*u3);  % output
 
% Missing values are added in order to test the ability of the
% algorithms to automatically handle interpolation
 
u1(200:220)=NaN;
y(400:420)=NaN;
 
% Finally, white noise is added to the output signal to
% represent measurement noise.
 
randn('seed',6); ng=randn(n,1); ng=3*ng;
y=y+ng;
 
% --------------------------------------------------------
%                 Hit any key to continue
% --------------------------------------------------------
pause
 
% The noise to signal ratio is high, as seen by plotting the 
% uncontaminated data and the noise signal together.
 
subplot(211)
plot(y-ng,'-k'); ax=axis; ylabel('Output (pre-noise)')
 
title([' Noise to signal ratio = ' ...
  int2str(100*covnan(ng)/covnan(y-ng)) '%  by variance']);
 
subplot(212)
plot(ng,'-k'); axis(ax); ylabel('Noise signal')
 
% --------------------------------------------------------
%                 Hit any key to continue
% --------------------------------------------------------
pause
 
% The output, inputs and states are all plotted.
 
clf
subplot(4,2,1); plot(y,'-r');ylabel('Output')
subplot(4,2,3); plot(u1,'-b');ylabel('Input 1')
subplot(4,2,5); plot(u2,'-b');ylabel('Input 2')
subplot(4,2,7); plot(u3,'-b');ylabel('Input 3')
subplot(3,2,2); h=plot(x1,a,'.m');
xlabel('Dependent state 1'); ylabel('SDP 1'); set(h,'markersize',1)
subplot(3,2,4); h=plot(x2,b,'.m');
xlabel('Dependent state 2'); ylabel('SDP 2'); set(h,'markersize',1)
subplot(3,2,6); h=plot(x3,c,'.m');
xlabel('Dependent state 3');ylabel('SDP 3');set(h,'markersize',1)
 
% --------------------------------------------------------
%                 Hit any key to continue
% --------------------------------------------------------
pause
 
% The NVRs for the SDPs can be provided explicitly or 
% optimised by an internal call to the DLROPT function from
% SDP. If the any of the given NVRs are negative, this is 
% taken to indicate that the user wishes to optimise the NVR
% for the corresponding SDP. An NVR of -1 will force the 
% algorithm to optimise at the first iteration for that SDP,
% then retain this value for subsequent iterations. In 
% general an NVR input of -n will cause optimisation at the 
% first n iterations.
 
% In the following example, we optimise the first NVR at the
% first two iterations and the other NVRs at only the first
% iteration.
 
nvr=[-2 -1];  
 
% A Random Walk (RW) model is used for the first SDP and
% an Integrated Random Walk (IRW) model for all other SDPs.
 
TVP=[0 1];
 
% --------------------------------------------------------
%                 Hit any key to continue
% --------------------------------------------------------
pause
 
% The estimation options are set such that there can be a
% maximum of 10 iterations, the convergence criteria (for
% r-squared) is 0.0001, the plotting option is set to 1 
% to show results during estimation and the other estimation
% options are set to their default (shown by -1 inputs).
 
opts=[10 0.0001 -1 -1 -1 1];
 
% The main function call is then made, to carry out
% the estimation, plotting the estimates as they are made.
% The initial esimates with NVR=0 are plotted blue. The
% latest SDP estimates are plotted red, with the points from
% the previous iterations being grey.
 
% --------------------------------------------------------
%                 Hit any key to continue
% --------------------------------------------------------
pause
 
clf
[fit,fitse,par,parse,zs,pars,parses,rsq,nvrid,y0]=sdp(y,z,x,TVP,nvr,opts);
 
% --------------------------------------------------------
%                 Hit any key to continue
% --------------------------------------------------------
pause
 
% Identified NVR for the first SDP
 
nvrid(1)
 
% Identified NVR for the second SDP
 
nvrid(2)
 
% Identified NVR for the third SDP
 
nvrid(3)
 
% --------------------------------------------------------
%                 Hit any key to continue
% --------------------------------------------------------
pause
 
% The r-squared value between the model output and the 
% output data is returned.
 
rsq
 
% Finally, the results can be plotted against the true SDP
% relationships, with standard error bounds shown as dashed
% lines.
 
% --------------------------------------------------------
%                 Hit any key to continue
% --------------------------------------------------------
pause
 
figure(1); clf
l1=plot(x1,a,'.b',zs(:,1),pars(:,1),'-g'); hold on
set(l1(2),'linewidth',2); set(l1(1),'markersize',1)
ylabel('a_k'); xlabel('x1_k');axis('square'); legend('par','sdp',-1)
plot(zs(:,1),pars(:,1)+parses(:,1),'--g',zs(:,1),pars(:,1)-parses(:,1),'--g')
title('First state dependent parameter')
 
figure(2)
l1=plot(x2,b,'.b',zs(:,2),pars(:,2),'-g'); hold on
set(l1(2),'linewidth',2); set(l1(1),'markersize',1)
ylabel('b_k'); xlabel('x2_k'); axis('square'); legend('par','sdp',-1)
plot(zs(:,2),pars(:,2)+parses(:,2),'--g',zs(:,2),pars(:,2)-parses(:,2),'--g')
title('Second state dependent parameter')
 
figure(3)
l1=plot(x3,c,'.b',zs(:,3),pars(:,3),'-g'); hold on
set(l1(2),'linewidth',2);set(l1(1),'markersize',1)
ylabel('c_k'); xlabel('x3_k'); axis('square'); legend('par','sdp',-1)
plot(zs(:,3),pars(:,3)+parses(:,3),'--g',zs(:,3),pars(:,3)-parses(:,3),'--g')
title('Third state dependent parameter')
 
echo off

% end of m-file

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
av一区二区久久| 色狠狠桃花综合| 成人动漫一区二区三区| 欧美精品久久99久久在免费线 | 欧美日韩中文字幕一区| 欧美成人官网二区| 亚洲伦理在线免费看| 国产一区久久久| 日韩限制级电影在线观看| 一区二区三区精品| 99视频有精品| 夜夜精品浪潮av一区二区三区| 欧美图区在线视频| 国产精品女主播在线观看| 免费观看在线综合| 欧美三级视频在线| 美女看a上一区| 7777女厕盗摄久久久| 亚洲与欧洲av电影| 色婷婷精品大视频在线蜜桃视频 | 久久国产精品第一页| 欧美一区二区三区小说| 午夜视频一区二区三区| 欧美性生活一区| 蜜桃视频免费观看一区| 国产欧美久久久精品影院| 国产a久久麻豆| 亚洲国产成人在线| 成人午夜视频福利| 中文字幕一区在线| 99精品视频免费在线观看| 国产精品三级在线观看| 欧美日韩亚洲高清一区二区| 国产尤物一区二区| 亚洲已满18点击进入久久| 日韩一级二级三级精品视频| 成人18视频日本| 六月丁香婷婷色狠狠久久| 亚洲婷婷国产精品电影人久久| 成人污污视频在线观看| 视频一区中文字幕国产| 欧美二区三区的天堂| 床上的激情91.| 亚洲成人动漫一区| 精品国产成人系列| 成人涩涩免费视频| 青青草97国产精品免费观看 | 精一区二区三区| 精品动漫一区二区三区在线观看| 91麻豆免费看片| 亚洲一区在线电影| 国产精品青草综合久久久久99| 欧美电影精品一区二区| 国产伦精品一区二区三区免费| 亚洲高清在线精品| 欧美成人三级电影在线| 欧美老女人在线| 在线国产亚洲欧美| 蜜桃久久久久久久| 天堂午夜影视日韩欧美一区二区| 亚洲欧洲精品天堂一级| 久久久精品综合| 一本久久综合亚洲鲁鲁五月天 | 亚洲电影视频在线| 亚洲欧美另类小说视频| 9191国产精品| 欧美午夜精品电影| 欧美亚一区二区| 国产成a人无v码亚洲福利| 久久99日本精品| 麻豆成人久久精品二区三区红 | 一本色道久久综合亚洲aⅴ蜜桃 | 欧美日韩第一区日日骚| 国产在线乱码一区二区三区| 亚洲欧美另类图片小说| 专区另类欧美日韩| 国产精品久久久久久久岛一牛影视 | 自拍偷拍亚洲欧美日韩| 国产精品―色哟哟| 国产精品国产三级国产aⅴ入口| 国产欧美一区在线| 中文幕一区二区三区久久蜜桃| 久久亚洲一区二区三区明星换脸| 91原创在线视频| 99re免费视频精品全部| 99精品国产99久久久久久白柏| 岛国一区二区在线观看| jlzzjlzz亚洲日本少妇| 91在线观看视频| 91电影在线观看| 欧美日韩亚洲丝袜制服| 日韩色视频在线观看| 日韩美女视频一区二区在线观看| 日韩欧美一卡二卡| 国产亚洲一区二区在线观看| 欧美日本精品一区二区三区| 日韩午夜中文字幕| 精品黑人一区二区三区久久 | 91丝袜国产在线播放| 日本韩国一区二区| 欧美精品99久久久**| 亚洲精品在线免费观看视频| 国产人成亚洲第一网站在线播放| 亚洲男同性视频| 日韩电影一区二区三区四区| 亚洲精品视频观看| 日韩制服丝袜av| 国产精品自拍网站| 精品在线播放午夜| 国产不卡视频一区| 色就色 综合激情| 日韩午夜三级在线| 国产精品人人做人人爽人人添| 一区二区三区日韩在线观看| 日本成人在线一区| 不卡的av在线| 884aa四虎影成人精品一区| 国产午夜精品久久久久久久 | av成人免费在线| 欧美日韩成人一区| 国产欧美日韩不卡免费| 午夜免费久久看| 99久久综合狠狠综合久久| 7777精品伊人久久久大香线蕉的| 久久老女人爱爱| 亚洲成人午夜电影| 成人深夜福利app| 日韩欧美在线不卡| 亚洲欧美另类小说视频| 国产精品一二三在| 欧美老女人在线| 国产亚洲美州欧州综合国| 亚洲成av人片在线观看| 成人一级视频在线观看| 日韩视频不卡中文| 亚洲夂夂婷婷色拍ww47| 懂色av一区二区在线播放| 777久久久精品| 一区二区欧美在线观看| 国产成人免费xxxxxxxx| 99国产精品视频免费观看| 欧美电视剧免费全集观看| 国产在线日韩欧美| 在线不卡中文字幕播放| 日韩理论片网站| 国产精品一区二区不卡| 欧美一区二区三区人| 一区二区三区免费看视频| 国产mv日韩mv欧美| 精品国产一区二区三区忘忧草| 亚洲h动漫在线| 在线一区二区三区| 亚洲视频免费在线| 99免费精品视频| 国产精品国产三级国产有无不卡 | 日韩精品一区二区三区在线播放| 亚洲综合久久久久| 99riav久久精品riav| 国产日韩欧美a| 国产一区二区免费看| 精品国产三级a在线观看| 青青草精品视频| 欧美一区二区三区在线观看视频| 午夜精品久久久久影视| 欧美三级电影在线观看| 亚洲国产欧美一区二区三区丁香婷| 91丨porny丨最新| 亚洲欧洲综合另类在线| av在线一区二区| 亚洲色欲色欲www| 91亚洲永久精品| 亚洲精品欧美激情| 欧美在线不卡视频| 亚洲综合视频在线观看| 91官网在线免费观看| 洋洋成人永久网站入口| 欧美优质美女网站| 亚洲成人av电影在线| 这里只有精品视频在线观看| 日韩国产欧美在线播放| 亚洲精品一区二区三区在线观看| 国产伦理精品不卡| 国产精品超碰97尤物18| 在线亚洲+欧美+日本专区| 亚洲成人黄色小说| 日韩一级免费一区| 国产成人在线视频免费播放| 国产精品久久久久影院| 99精品偷自拍| 亚洲成人免费视| 精品国产欧美一区二区| 成人高清免费观看| 一区二区在线观看免费视频播放| 欧美日韩在线播放一区| 蜜桃视频免费观看一区| 国产精品丝袜一区| 欧美三级资源在线| 国产精品一线二线三线| 亚洲精品福利视频网站| 日韩亚洲欧美一区|