亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? riv.m

?? 動(dòng)態(tài)時(shí)間序列分析工具包.包括有ARMA,harmonic model,kalman filter等方法
?? M
字號(hào):
function [TH,STATS,E,vr,Ps,P,y0,AH,AHse,PH,Pr] = riv(Z,nn,flags,a0,P0)
% RIV  Estimation of a backward shift MISO transfer function
%
% [th,stats,e,var,Ps,Pc,y0,AH,AHse,PH,Pr]=riv(z,nn,flags,a0,P0)
%
% z: I-O data, [Y,U1,...,Unu] where Y and U are column vectors (*)
% nn: Model order, [na,nb(1:nu),nd(1:nu),nc] (*)
%      (na: denominator, nb: numerators, nd: delays, nc: noise AR)
% flags: Additional parameters vector [Ni,Ft,Nr,Lr,Rc,Stb,Yini]
%        Missing value or -1 implies use default in brackets
%        Ni and Nr are mutually exclusive: there is automatic
%        switching between SRIV (Ni>0, Nr=0; nc=0) and full RIV
%        (Ni=0; Nr>0; nc>0) when necessary
%          (1) Ni: Number of basic IV/SRIV iterations (3 - SRIV}
%          (2) Ft: Filtering in IV/SRIV (2)
%                    1: Stabilised A for prefiltering only
%                    2: Stabilised A for instruments and prefilter
%                    0: Filtering turned off
%          (3) Nr: Number of RIV iterations including
%                    AR noise model (0 if nc=0, else 3)
%          (4) Lr: Linear regression method (0)
%                    0: Standard
%                    tol>0: SVD/QR robust algorithm
%          (5) Rc: Block (0-default) or recursive algorithm (1-slower)
%          (6) Stb: Stabilisation of filter and model polynomial (1)
%                     0: no stabilisation
%                     1: stabilise filter and instrument generation
%                     2: stabilise filter only (enables estimation
%                         of marginally unstable systems)
%          (7) Yini: Initial conditions (0)
%                     0: original initial y values
%                     1: mean value of initial y values
% a0: Initial parameter estimates for recursive algorithm (0)
% P0: Initial covariance diagonal for recursive algorithm (1000)
%
% th: Theta matrix (see 'help thetam')
% stats: Statistics [cond(P),YIC,RT2,AIC,S2,o2,EVN,Ybar,RT2AR,YICa,YICt]
%          RT2: I-O part only, RT2AR: noise model only
%          Total RT2 = RT2+RT2AR*(1-RT2); YIC uses I-O RT2
%          YICa - YIC using asymmetric matrix
%          YICt - YIC 'total' using full quadratic form, not just trace
% e: Model output errors (y=fit+e)
% var: Residual variance
% Ps: Covariance matrix for I-O parameter estimates
% Pc: Covariance matrix for AR parameter estimates
% y0: Interpolated data
% AH: Recursive estimation parameters history (recursive solution only)
% AHse: Recursive estimates of standard deviations of AH 
% PH: Recursive estimates covariance matrix evolution
%       e.g. AH(:,24) is the parameters vector estimate at sample 24
%       with the standard deviations AHse(:,24) and the covariance matrix
%       given by PH(:,23*size(AH,1)+(1:size(AH,1)))
% Pr: Asymmetric RIV covariance matrix estimate
%
% Example: th=riv([y u], [2 1 3 0], [-1 0])
%   output y and input u, estimate a model with a [2 1 3 0]
%   structure, using 3 IV iterations and no filtering
%
% See also RIVID, RIVC, RIVCID, GETPAR, PREPZ, SCALEB, THETA

% Copyright (c) 2006 by CRES, Lancaster University, United Kingdom
% Authors : Peter Young, Wlodek Tych, Diego Pedregal, James Taylor

% The argument z is a matrix consisting of the output variable in 
% the first column and the input (or inputs) in the remaining k 
% columns, where k is the number of input variables.
% The model orders are passed by to the function by means of the 
% nn argument. This is a vector with the format [na nb nd nc], 
% where na is the order (a scalar) of the common denominator 
% polynomial; nb is a vector (of dimension k) of orders for all the 
% numerator polynomials; nd is a vector (similarly of dimension k) 
% of delays for all the inputs in the model; and nc is the order of 
% the AR model for the perturbations (scalar). These are the 
% compulsory input arguments, while the rest are optional and are 
% set to default values when they are not supplied by the user.
% 
% The input argument flags is a vector of values [Ni Ft Nr Lr Rc] 
% in which: Ni is the number of IV/SRIV iterations (set to 3 by 
% default); Ft specifies the filtering, where 1 indicates prefiltering 
% using a stabilised denominator polynomial, 2 used a stabilised 
% denominator polynomial for both the instruments and the 
% prefiltering (default) and 0 turns the filtering operation off; Nr is 
% the number of RIV iterations (for the co-ordination between the 
% system and noise models); Lr sets the linear regression method 
% to either standard least squares (0) or a SVD/QR algorithm with 
% tolerance equal to Lr (in case collinearity problems are 
% suspected); and Rc switches between the en-block (0 - default) 
% and recursive (1) solutions.
% 
% If there are any missing (nan) values in the output, the algorithm 
% automatically switches to recursive mode. If only some of the 
% values in flags require changing, the rest may be set to -1 
% (default values). The final input arguments (a0 and P0) are the 
% initial conditions for the mean and covariance of the parameters. 
% These arguments are ignored in en block mode.
% 
% The first output argument th provides information about the 
% estimated model in the form of a standard theta matrix (see 'help 
% theta'), from which the estimated polynomials may be recovered 
% using getpar (see 'help getpar').
% 
% The second output argument (stats) is a vector of various 
% criteria useful for the evaluation of the model, i.e. [cond(P), 
% YIC, RT2, AIC, S2, o2, EVN, Ybar, RT2AR]. Here, YIC, 
% RT2 and AIC are defined by equations (6.46), 6.47) and 
% (4.48). For each of these criteria, the model fit is determined 
% from the input-output part of the model, while the RT2AR term 
% above refers to the RT2 for the noise model. In this regard, the 
% overall fit may be calculated from RT2+RT2AR*(1-RT2). In 
% stats, cond(P) refers to the conditioning of the P covariance 
% matrix, S2 and o2 are the variance of the residuals and output 
% variable respectively, EVN is the log of the average parameter 
% standard errors and, finally, Ybar is the mean of y0 (see below).
%
% The model output errors are stored in e, with variance var. Ps 
% and Pc are the covariance matrix of the system and noise model 
% parameter estimates respectively. Finally, y0 recovers the 
% interpolated data, i.e. the missing output observations are 
% replaced by the estimated values.

if nargin==0
  disp(' ')
  disp(' RIV  Estimation of a backward shift MISO transfer function')
  disp(' ')
  disp(' [th,stats,e,var,Ps,Pc,y0,AH,AHse,PH,Pr]=riv(z,nn,flags,a0,P0)')
  disp(' ')
  return
end

if nargin<1, Z=[]; end
if nargin<2, nn=[]; end
if nargin<3, flags=[]; end
if nargin<4, a0=[]; end
if nargin<5, P0=[]; end

[TH,STATS,E,vr,Ps,P,y0,AH,AHse,PH,Pr]=riv0(Z,nn,flags,a0,P0);

% end of m-file

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品电影一区二区三区| 91网站在线观看视频| 久久精品视频在线免费观看 | 色婷婷亚洲婷婷| 亚洲色图欧洲色图| 色综合久久久久网| 五月综合激情网| 91精品国产入口在线| 日本少妇一区二区| 2019国产精品| 97se亚洲国产综合自在线 | 国产日韩欧美精品一区| 成人小视频在线| 亚洲尤物在线视频观看| 欧美精品久久一区二区三区| 久久国产精品色婷婷| 亚洲国产精品二十页| 色天使久久综合网天天| 青青草国产成人99久久| 久久精品视频在线免费观看| 一区二区免费在线| 丁香六月综合激情| 亚洲视频一区在线观看| 91精品国产品国语在线不卡| 国产精品影视在线观看| 一区二区欧美在线观看| 精品国产一区二区三区久久影院| 国产成人鲁色资源国产91色综| 亚洲精品乱码久久久久久| 日韩一区二区三区三四区视频在线观看 | 性欧美大战久久久久久久久| 26uuuu精品一区二区| 在线观看不卡一区| 精品一区二区三区的国产在线播放| 亚洲国产精品成人综合| 777午夜精品视频在线播放| 国产成人精品亚洲午夜麻豆| 亚洲福利视频三区| 国产女主播视频一区二区| 欧美精品少妇一区二区三区| 国产福利精品导航| 国产亚洲一本大道中文在线| av在线不卡网| 五月天欧美精品| 国产精品美女久久久久久久久| 91精品国产综合久久久久久漫画| 成人免费福利片| 麻豆精品一区二区综合av| 亚洲美女少妇撒尿| 中文字幕不卡一区| 精品国产91久久久久久久妲己 | 色婷婷激情一区二区三区| 国产麻豆日韩欧美久久| 秋霞电影一区二区| 一区二区三区欧美| 亚洲欧洲制服丝袜| 国产精品污www在线观看| 精品国产一区二区三区av性色| 欧美少妇一区二区| 91久久精品日日躁夜夜躁欧美| 国产一区二区在线看| 蜜臀av性久久久久蜜臀aⅴ四虎| 一区二区不卡在线播放| 精品久久久久久久一区二区蜜臀| 日韩伦理免费电影| 国产欧美日韩不卡| 亚洲精品一区二区精华| 欧美一区二区观看视频| 欧美日韩亚洲综合在线| 欧美性生活一区| 色婷婷综合久色| 91精品福利在线| 91黄色免费网站| 色94色欧美sute亚洲线路一ni| 99久久伊人精品| 色综合久久综合| 色综合天天综合狠狠| 91女神在线视频| 91在线免费视频观看| 一本久道久久综合中文字幕| 91污片在线观看| 91久久精品一区二区| 欧美色精品在线视频| 欧美日本在线视频| 欧美理论片在线| 欧美一区二区在线免费播放| 欧美一级高清大全免费观看| aa级大片欧美| 成人精品视频一区| 91福利在线导航| 欧美日韩久久一区| 9191久久久久久久久久久| 欧美精品日韩一本| 欧美一级专区免费大片| 2020国产成人综合网| 欧美韩国一区二区| 国产精品国产三级国产普通话三级| 欧美日本一区二区在线观看| 欧美一区在线视频| 欧美精品一区在线观看| 中文天堂在线一区| 亚洲午夜电影在线观看| 美女任你摸久久| 国产福利一区二区| 色哟哟一区二区三区| 欧美疯狂做受xxxx富婆| 日韩精品自拍偷拍| 国产精品网站在线| 亚洲高清免费一级二级三级| 狠狠色丁香久久婷婷综合丁香| 成人黄色电影在线| 欧美乱熟臀69xxxxxx| 欧美经典一区二区| 亚洲高清一区二区三区| 国产一区免费电影| 欧美三级三级三级爽爽爽| 久久久久久免费| 亚洲一区二区三区四区在线观看| 免费在线观看视频一区| 成人av中文字幕| 欧美一区二区三区视频| 一区视频在线播放| 美女网站色91| 色狠狠色噜噜噜综合网| 久久综合资源网| 亚洲一区二区五区| 成人在线视频一区二区| 欧美一区二区私人影院日本| 国产精品午夜在线| 久久国产精品一区二区| 在线观看一区日韩| 国产精品免费免费| 久久99精品久久久| 欧美自拍丝袜亚洲| 日本一区二区电影| 国产在线观看免费一区| 欧美狂野另类xxxxoooo| 一区二区中文视频| 国产精品99精品久久免费| 9191成人精品久久| 亚洲精品国产无天堂网2021| 高清不卡在线观看av| 久久夜色精品一区| 奇米影视一区二区三区| 99国产精品久久| 亚洲国产成人私人影院tom| 久久不见久久见免费视频7| 欧美喷潮久久久xxxxx| 亚洲日本中文字幕区| 高清beeg欧美| 久久久久国产精品麻豆| 精品制服美女丁香| 欧美一级理论片| 亚洲国产va精品久久久不卡综合| 91蝌蚪porny| 国产精品久99| 成人性生交大片免费看中文| 久久久久久久久久久久电影| 国产中文字幕精品| 精品久久国产字幕高潮| 麻豆精品一区二区综合av| 日韩一级在线观看| 美女在线观看视频一区二区| 在线播放欧美女士性生活| 午夜伦理一区二区| 4438亚洲最大| 蜜臀va亚洲va欧美va天堂 | 日韩黄色片在线观看| 欧美性大战久久久久久久| 亚洲国产精品一区二区www| 在线观看视频91| 亚洲国产精品一区二区久久| 欧美日韩免费在线视频| 亚洲第一福利视频在线| 欧美精品日韩精品| 麻豆国产欧美一区二区三区| 日韩美一区二区三区| 国产曰批免费观看久久久| 久久久久久亚洲综合影院红桃| 国产91在线观看| 中文字幕在线一区二区三区| 99久久久国产精品| 亚洲综合在线第一页| 在线播放国产精品二区一二区四区 | 欧美日韩一区中文字幕| 天堂在线亚洲视频| 日韩欧美一区二区免费| 国产九色sp调教91| 国产精品丝袜黑色高跟| 在线精品视频免费播放| 日韩激情中文字幕| 久久久久久免费网| 91女人视频在线观看| 日本三级亚洲精品| 久久午夜老司机| 91丝袜国产在线播放| 五月激情丁香一区二区三区| 久久精品亚洲乱码伦伦中文| 91在线小视频| 久久99精品久久久|