亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? nsga_2.html

?? NSGA原代碼
?? HTML
?? 第 1 頁 / 共 2 頁
字號:
<html xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">   <head>      <meta http-equiv="Content-Type" content="text/html; charset=utf-8">         <!--This HTML is auto-generated from an M-file.To make changes, update the M-file and republish this document.      -->      <title>function nsga_2(pop,gen)</title>      <meta name="generator" content="MATLAB 7.0">      <meta name="date" content="2006-03-16">      <meta name="m-file" content="nsga_2"><style>body {  background-color: white;  margin:10px;}h1 {  color: #990000;   font-size: x-large;}h2 {  color: #990000;  font-size: medium;}p.footer {  text-align: right;  font-size: xx-small;  font-weight: lighter;  font-style: italic;  color: gray;}pre.codeinput {  margin-left: 30px;}span.keyword {color: #0000FF}span.comment {color: #228B22}span.string {color: #A020F0}span.untermstring {color: #B20000}span.syscmd {color: #B28C00}pre.showbuttons {  margin-left: 30px;  border: solid black 2px;  padding: 4px;  background: #EBEFF3;}pre.codeoutput {  color: gray;  font-style: italic;}pre.error {  color: red;}/* Make the text shrink to fit narrow windows, but not stretch too far in wide windows.  On Gecko-based browsers, the shrink-to-fit doesn't work. */ p,h1,h2,div {  /* for MATLAB's browser */  width: 600px;  /* for Mozilla, but the "width" tag overrides it anyway */  max-width: 600px;  /* for IE */  width:expression(document.body.clientWidth > 620 ? "600px": "auto" );}    </style></head>   <body>      <h1>function nsga_2(pop,gen)</h1>      <introduction>         <p>is a multi-objective optimization function where the input arguments are pop - Population size gen - Total number of generations</p>         <p>This functions is based on evolutionary algorithm for finding the optimal solution for multiple objective i.e. pareto front            for the objectives. Initially enter only the population size and the stoping criteria or the total number of generations after            which the algorithm will automatically stopped.         </p>         <p>You will be asked to enter the number of objective functions, the number of decision variables and the range space for the            decision variables. Also you will have to define your own objective funciton by editing the evaluate_objective() function.            A sample objective function is described in evaluate_objective.m. Kindly make sure that the objective function which you define            match the number of objectives that you have entered as well as the number of decision variables that you have entered. The            decision variable space is continuous for this function, but the objective space may or may not be continuous.         </p>         <p>Original algorithm NSGA-II was developed by researchers in Kanpur Genetic Algorithm Labarotary and kindly visit their website            for more information <a href="http://www.iitk.ac.in/kangal/">http://www.iitk.ac.in/kangal/</a></p>      </introduction>      <h2>Contents</h2>      <div>         <ul>            <li><a href="#1">Simple error checking</a></li>            <li><a href="#2">Objective Function</a></li>            <li><a href="#3">Initialize the population</a></li>            <li><a href="#4">Sort the initialized population</a></li>            <li><a href="#5">Start the evolution process</a></li>            <li><a href="#6">Result</a></li>            <li><a href="#7">Visualize</a></li>         </ul>      </div>      <h2>Simple error checking<a name="1"></a></h2>      <p>Number of Arguments Check for the number of arguments. The two input arguments are necessary to run this function.</p><pre class="codeinput"><span class="keyword">if</span> nargin &lt; 2    error(<span class="string">'NSGA-II: Please enter the population size and number of generations as input arguments.'</span>);<span class="keyword">end</span><span class="comment">% Both the input arguments need to of integer data type</span><span class="keyword">if</span> isnumeric(pop) == 0 || isnumeric(gen) == 0    error(<span class="string">'Both input arguments pop and gen should be integer datatype'</span>);<span class="keyword">end</span><span class="comment">% Minimum population size has to be 20 individuals</span><span class="keyword">if</span> pop &lt; 20    error(<span class="string">'Minimum population for running this function is 20'</span>);<span class="keyword">end</span><span class="keyword">if</span> gen &lt; 5    error(<span class="string">'Minimum number of generations is 5'</span>);<span class="keyword">end</span><span class="comment">% Make sure pop and gen are integers</span>pop = round(pop);gen = round(gen);</pre><h2>Objective Function<a name="2"></a></h2>      <p>The objective function description contains information about the objective function. M is the dimension of the objective         space, V is the dimension of decision variable space, min_range and max_range are the range for the variables in the decision         variable space. User has to define the objective functions using the decision variables. Make sure to edit the function 'evaluate_objective'         to suit your needs.      </p><pre class="codeinput">[M, V, min_range, max_range] = objective_description_function();</pre><h2>Initialize the population<a name="3"></a></h2>      <p>Population is initialized with random values which are within the specified range. Each chromosome consists of the decision         variables. Also the value of the objective functions, rank and crowding distance information is also added to the chromosome         vector but only the elements of the vector which has the decision variables are operated upon to perform the genetic operations         like corssover and mutation.      </p><pre class="codeinput">chromosome = initialize_variables(pop, M, V, min_range, max_range);</pre><h2>Sort the initialized population<a name="4"></a></h2>      <p>Sort the population using non-domination-sort. This returns two columns for each individual which are the rank and the crowding         distance corresponding to their position in the front they belong. At this stage the rank and the crowding distance for each         chromosome is added to the chromosome vector for easy of computation.      </p><pre class="codeinput">chromosome = non_domination_sort_mod(chromosome, M, V);</pre><h2>Start the evolution process<a name="5"></a></h2>      <p>The following are performed in each generation * Select the parents which are fit for reproduction * Perfrom crossover and         Mutation operator on the selected parents * Perform Selection from the parents and the offsprings * Replace the unfit individuals         with the fit individuals to maintain a   constant population size.      </p><pre class="codeinput"><span class="keyword">for</span> i = 1 : gen    <span class="comment">% Select the parents</span>    <span class="comment">% Parents are selected for reproduction to generate offspring. The</span>    <span class="comment">% original NSGA-II uses a binary tournament selection based on the</span>    <span class="comment">% crowded-comparision operator. The arguments are</span>    <span class="comment">% pool - size of the mating pool. It is common to have this to be half the</span>    <span class="comment">%        population size.</span>    <span class="comment">% tour - Tournament size. Original NSGA-II uses a binary tournament</span>    <span class="comment">%        selection, but to see the effect of tournament size this is kept</span>    <span class="comment">%        arbitary, to be choosen by the user.</span>    pool = round(pop/2);    tour = 2;    <span class="comment">% Selection process</span>    <span class="comment">% A binary tournament selection is employed in NSGA-II. In a binary</span>    <span class="comment">% tournament selection process two individuals are selected at random</span>    <span class="comment">% and their fitness is compared. The individual with better fitness is</span>    <span class="comment">% selcted as a parent. Tournament selection is carried out until the</span>    <span class="comment">% pool size is filled. Basically a pool size is the number of parents</span>    <span class="comment">% to be selected. The input arguments to the function</span>    <span class="comment">% tournament_selection are chromosome, pool, tour. The function uses</span>    <span class="comment">% only the information from last two elements in the chromosome vector.</span>    <span class="comment">% The last element has the crowding distance information while the</span>    <span class="comment">% penultimate element has the rank information. Selection is based on</span>    <span class="comment">% rank and if individuals with same rank are encountered, crowding</span>    <span class="comment">% distance is compared. A lower rank and higher crowding distance is</span>    <span class="comment">% the selection criteria.</span>    parent_chromosome = tournament_selection(chromosome, pool, tour);    <span class="comment">% Perfrom crossover and Mutation operator</span>    <span class="comment">% The original NSGA-II algorithm uses Simulated Binary Crossover (SBX) and</span>    <span class="comment">% Polynomial  mutation. Crossover probability pc = 0.9 and mutation</span>    <span class="comment">% probability is pm = 1/n, where n is the number of decision variables.</span>    <span class="comment">% Both real-coded GA and binary-coded GA are implemented in the original</span>    <span class="comment">% algorithm, while in this program only the real-coded GA is considered.</span>    <span class="comment">% The distribution indeices for crossover and mutation operators as mu = 20</span>    <span class="comment">% and mum = 20 respectively.</span>    mu = 20;    mum = 20;    offspring_chromosome = <span class="keyword">...</span>        genetic_operator(parent_chromosome, <span class="keyword">...</span>        M, V, mu, mum, min_range, max_range);    <span class="comment">% Intermediate population</span>    <span class="comment">% Intermediate population is the combined population of parents and</span>    <span class="comment">% offsprings of the current generation. The population size is two</span>    <span class="comment">% times the initial population.</span>    [main_pop,temp] = size(chromosome);    [offspring_pop,temp] = size(offspring_chromosome);    <span class="comment">% temp is a dummy variable.</span>    clear <span class="string">temp</span>    <span class="comment">% intermediate_chromosome is a concatenation of current population and</span>    <span class="comment">% the offspring population.</span>    intermediate_chromosome(1:main_pop,:) = chromosome;    intermediate_chromosome(main_pop + 1 : main_pop + offspring_pop,1 : M+V) = <span class="keyword">...</span>        offspring_chromosome;    <span class="comment">% Non-domination-sort of intermediate population</span>    <span class="comment">% The intermediate population is sorted again based on non-domination sort</span>    <span class="comment">% before the replacement operator is performed on the intermediate</span>    <span class="comment">% population.</span>    intermediate_chromosome = <span class="keyword">...</span>        non_domination_sort_mod(intermediate_chromosome, M, V);    <span class="comment">% Perform Selection</span>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
无码av免费一区二区三区试看| 亚洲最色的网站| 久久国产日韩欧美精品| 欧美精品免费视频| 三级成人在线视频| 欧美一级黄色片| 久久精品国产成人一区二区三区 | 国产成人在线观看免费网站| 精品国产一二三区| 国产成人在线视频免费播放| 国产欧美精品一区二区色综合朱莉 | 亚洲欧美二区三区| 在线免费观看不卡av| 午夜视频在线观看一区二区 | 国产精品久久久久影院色老大| 成人午夜电影网站| 国产精品看片你懂得| 91色综合久久久久婷婷| 亚洲黄色免费网站| 91精选在线观看| 国产精品亚洲第一| 亚洲精品老司机| 日韩午夜在线观看视频| 国产成人无遮挡在线视频| 亚洲欧美另类在线| 欧美成人a∨高清免费观看| 国产白丝网站精品污在线入口| 《视频一区视频二区| 欧美人狂配大交3d怪物一区| 久久精品国产**网站演员| 久久精品视频一区二区| www.在线成人| 热久久国产精品| 欧美国产一区二区| 欧美日韩视频在线观看一区二区三区 | 国产精品三级视频| 欧美日韩视频在线第一区 | 亚洲mv大片欧洲mv大片精品| 日韩免费观看2025年上映的电影| 成人在线视频一区| 香蕉av福利精品导航| 久久久久久电影| 欧美在线免费观看亚洲| 国产精品小仙女| 亚洲国产精品综合小说图片区| 欧美大片在线观看一区| 99久久99久久精品国产片果冻| 日日嗨av一区二区三区四区| 国产精品久久久99| 精品少妇一区二区三区日产乱码 | 高清国产一区二区| 日韩成人一级大片| 亚洲视频免费在线观看| 日韩欧美在线网站| 欧美日韩精品一二三区| aaa亚洲精品| 国产精品99久久久| 日本欧美久久久久免费播放网| 中文字幕中文乱码欧美一区二区 | 久久综合色婷婷| 欧美日韩国产综合草草| 99国产精品久久久久久久久久久 | 亚洲激情六月丁香| 欧美电影免费观看高清完整版在 | 精品国产sm最大网站免费看| 欧美少妇一区二区| 色婷婷亚洲综合| 成人激情免费网站| 国产91在线看| 国产一区不卡在线| 狠狠色丁香婷婷综合| 青青草国产精品亚洲专区无| 亚洲综合清纯丝袜自拍| 中文字幕一区二区三区不卡| 久久网站热最新地址| 91精品国产综合久久国产大片| 色狠狠一区二区三区香蕉| 成人午夜av影视| 成人18视频日本| 国产精品一区二区不卡| 久久精品99久久久| 国内精品久久久久影院一蜜桃| 日韩国产一二三区| 日韩精品成人一区二区在线| 亚洲成av人在线观看| 五月天中文字幕一区二区| 亚洲国产另类精品专区| 一区二区三区 在线观看视频| 国产精品久久久久久一区二区三区| 久久综合丝袜日本网| 国产亚洲精久久久久久| 久久久久久免费毛片精品| 久久久亚洲精品石原莉奈| 久久精品亚洲精品国产欧美| 久久日韩精品一区二区五区| 精品国产区一区| 久久久噜噜噜久久中文字幕色伊伊 | 国产精品午夜电影| 中文字幕成人网| 一区精品在线播放| 亚洲精品乱码久久久久久日本蜜臀| 亚洲福利一二三区| 免费成人av资源网| 国产成人在线视频网址| 91看片淫黄大片一级在线观看| 91美女在线视频| 538prom精品视频线放| 欧美tk—视频vk| 中文字幕av在线一区二区三区| 亚洲视频狠狠干| 日韩二区三区四区| 国产精品一区二区久久精品爱涩| 91丝袜呻吟高潮美腿白嫩在线观看| 色94色欧美sute亚洲13| 在线免费av一区| 欧美一级片在线| 国产女人18水真多18精品一级做| 2024国产精品视频| 亚洲人成在线播放网站岛国| 视频一区二区三区中文字幕| 久久精品99国产精品| 岛国一区二区三区| 欧美高清激情brazzers| 国产欧美一区二区精品性色| 一区二区三区高清| 国产一区二区看久久| 91免费观看在线| 精品国产凹凸成av人网站| 一区2区3区在线看| 国产一区三区三区| av在线不卡电影| 日韩三级.com| 国产精品久久国产精麻豆99网站| 一区二区视频在线| 国产资源在线一区| 国产一区二区三区| 欧美日本在线观看| 一区精品在线播放| 蜜桃精品视频在线| 91论坛在线播放| 欧美女孩性生活视频| 国产调教视频一区| 男人的j进女人的j一区| 国产69精品久久99不卡| 8x8x8国产精品| 国产精品福利av| 韩国av一区二区三区四区| 91在线丨porny丨国产| 欧美成人aa大片| 亚洲最大成人综合| 9i在线看片成人免费| 欧美日韩一级二级三级| 国产精品蜜臀在线观看| 国产一区999| 6080yy午夜一二三区久久| 玉足女爽爽91| 国产美女久久久久| 精品久久久久久久久久久久包黑料| 中文字幕综合网| 成人av小说网| 日韩一区二区三区高清免费看看| 中文字幕一区二区5566日韩| 国产一区二区精品久久| 91精品在线一区二区| 婷婷中文字幕综合| 91麻豆福利精品推荐| 中文字幕色av一区二区三区| 麻豆成人免费电影| 日韩天堂在线观看| 一区二区三区免费在线观看| 成人97人人超碰人人99| 国产精品欧美久久久久无广告| 久久精品国产精品亚洲精品 | 亚洲精品视频免费观看| 国产馆精品极品| www久久精品| 麻豆成人综合网| 欧美成人一级视频| 日韩黄色免费电影| 欧美日韩五月天| 亚洲一二三区在线观看| 99精品1区2区| 伊人性伊人情综合网| 91视频www| 丝袜美腿亚洲色图| 国产成人av电影在线| 中文在线免费一区三区高中清不卡| 大桥未久av一区二区三区中文| 精品国产露脸精彩对白| 成人深夜福利app| 国产精品视频一二三区| 色综合一区二区三区| 国产三级三级三级精品8ⅰ区| 成人性生交大片免费看在线播放 | 欧美精品777| 三级久久三级久久| 久久久亚洲综合| 国产在线精品一区二区| 久久亚洲私人国产精品va媚药| 国产精品一区在线|