?? compound ?
字號(hào):
(************** Content-type: application/mathematica **************
CreatedBy='Mathematica 5.0'
Mathematica-Compatible Notebook
This notebook can be used with any Mathematica-compatible
application, such as Mathematica, MathReader or Publicon. The data
for the notebook starts with the line containing stars above.
To get the notebook into a Mathematica-compatible application, do
one of the following:
* Save the data starting with the line of stars above into a file
with a name ending in .nb, then open the file inside the
application;
* Copy the data starting with the line of stars above to the
clipboard, then use the Paste menu command inside the application.
Data for notebooks contains only printable 7-bit ASCII and can be
sent directly in email or through ftp in text mode. Newlines can be
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing
the word CacheID, otherwise Mathematica-compatible applications may
try to use invalid cache data.
For more information on notebooks and Mathematica-compatible
applications, contact Wolfram Research:
web: http://www.wolfram.com
email: info@wolfram.com
phone: +1-217-398-0700 (U.S.)
Notebook reader applications are available free of charge from
Wolfram Research.
*******************************************************************)
(*CacheID: 232*)
(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[ 74349, 2620]*)
(*NotebookOutlinePosition[ 75014, 2643]*)
(* CellTagsIndexPosition[ 74970, 2639]*)
(*WindowFrame->Normal*)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
\(\(\[Epsilon]a = 1;\)\), "\[IndentingNewLine]",
\(\(\[Epsilon]b = 16.5;\)\[IndentingNewLine]\), "\[IndentingNewLine]",
\(\(a = 20;\)\), "\[IndentingNewLine]",
\(\(R1 = 0.4*a;\)\), "\[IndentingNewLine]",
\(\(R2 = 0.23*R1;\)\), "\[IndentingNewLine]",
\(\(s = a^2;\)\[IndentingNewLine]\ \ \ \ \), "\[IndentingNewLine]",
\(\(b1 = {1.0, 0};\)\), "\[IndentingNewLine]",
\(\(b2 = {0, 1.0};\)\[IndentingNewLine]\), "\[IndentingNewLine]",
\(\(p0 =
1\/\[Epsilon]b +
1\/s*\((1\/\[Epsilon]a -
1\/\[Epsilon]b)\)*3.14*\((\((R1^2)\) - \((R2^2)\))\);\)\
\[IndentingNewLine]\), "\[IndentingNewLine]",
\(\(m = 3;\)\[IndentingNewLine]\), "\[IndentingNewLine]",
\(\(xmin =
1;\)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \), \
"\[IndentingNewLine]",
\(\(xmax = 2*m + 1;\)\ \ \ \ \ \ \ \ \ \), "\[IndentingNewLine]",
\(\(xstep = 1;\)\[IndentingNewLine]\), "\[IndentingNewLine]",
\(\(\[Mu]max = 1.0;\)\), "\[IndentingNewLine]",
\(\(\[Mu]step = 0.01;\)\), "\[IndentingNewLine]",
\(\(\[Mu]min = \[Mu]step;\)\[IndentingNewLine]\), "\[IndentingNewLine]",
\(\(M =
Table[1, {i,
xmax^2}];\)\[IndentingNewLine]\), "\[IndentingNewLine]",
\(\(gg = Array[h1, {xmax^2, 2}];\)\), "\[IndentingNewLine]",
\(\(Do[\[IndentingNewLine]\(Do[\[IndentingNewLine]\(gg[\([\((i - 1)\)*
xmax + j]\)] = \((i - m - 1)\)*b1 + \((j - m - 1)\)*
b2;\), \[IndentingNewLine]{j, xmin, xmax,
xstep}];\), \[IndentingNewLine]{i, xmin, xmax,
xstep}];\)\[IndentingNewLine] (*xmax^2 \:4e2a\:5012\:683c\:77e2*) \
\[IndentingNewLine]\), "\[IndentingNewLine]",
\(\(pp = Array[h2, {xmax^2, xmax^2}];\)\), "\[IndentingNewLine]",
\(\(Do[\[IndentingNewLine]\(Do[\[IndentingNewLine]\(If[
i \[Equal] j, \ \[IndentingNewLine]pp[\([i, j]\)] = p0,
pp[\([i,
j]\)] = \((\(2*3.14*R1\)\/s*\((1\/\[Epsilon]a -
1\/\[Epsilon]b)\)*\((BesselJ[
1, \@\((\((\((gg[\([i, 1]\)] - gg[\([j, \
1]\)])\)^2 + \((gg[\([i, 2]\)] - gg[\([j, \
2]\)])\)^2)\)*R1)\)])\)/\((\@\((\((gg[\([i, 1]\)] - gg[\([j, 1]\)])\)^2 + \
\((gg[\([i, 2]\)] - gg[\([j, 2]\)])\)^2)\))\))\) + \((\(2*3.14*R2\)\/s*\((1\/\
\[Epsilon]b - 1\/\[Epsilon]a)\)*\((BesselJ[
1, \@\((\((\((gg[\([i, 1]\)] - gg[\([j, \
1]\)])\)^2 + \((gg[\([i, 2]\)] - gg[\([j, \
2]\)])\)^2)\)*R2)\)])\)/\((\@\((\((gg[\([i, 1]\)] - gg[\([j, 1]\)])\)^2 + \
\((gg[\([i, 2]\)] - gg[\([j, 2]\)])\)^2)\))\))\)];\), \[IndentingNewLine]{j,
xmin, xmax^2, xstep}];\), \[IndentingNewLine]{i, xmin, xmax^2,
xstep}];\)\[IndentingNewLine]\), "\[IndentingNewLine]",
\(\(MM = Array[h3, {xmax^2, xmax^2}];\)\), "\[IndentingNewLine]",
\(\(M\[Lambda] = {};\)\), "\[IndentingNewLine]",
\(\(\[Mu]\[Mu] = {};\)\[IndentingNewLine]\), "\[IndentingNewLine]",
\(\(Do[\[IndentingNewLine]Do[\[IndentingNewLine]\(Do[\[IndentingNewLine]k \
= {\[Mu], 0}; \[IndentingNewLine]MM[\([i,
j]\)] = \((\((k/2 + gg[\([j]\)])\) . \((k/2 +
gg[\([j]\)])\))\)*
pp[\([i, j]\)];, \[IndentingNewLine]{j, xmin, xmax^2,
xstep}\[IndentingNewLine]];\), \[IndentingNewLine]{i, xmin,
xmax^2, xstep}\[IndentingNewLine]]; \[IndentingNewLine]\
\[IndentingNewLine]m\[Lambda] =
Sqrt[Eigenvalues[MM]]; \[IndentingNewLine]M\[Lambda] = {M\[Lambda],
m\[Lambda]}; \[IndentingNewLine]\[Mu]\[Mu] = {\[Mu]\[Mu],
M*\[Mu]};, \[IndentingNewLine]\[IndentingNewLine]{\[Mu], \
\[Mu]min, \[Mu]max, \[Mu]step}\[IndentingNewLine]];\)\[IndentingNewLine]\
\[IndentingNewLine]\), "\[IndentingNewLine]",
\(\(Do[\[IndentingNewLine]Do[\[IndentingNewLine]\(Do[\[IndentingNewLine]k \
= {1.0, \[Mu]}; \[IndentingNewLine]MM[\([i,
j]\)] = \((\((k/2 + gg[\([j]\)])\) . \((k/2 +
gg[\([j]\)])\))\)*
pp[\([i, j]\)];, \[IndentingNewLine]{j, xmin, xmax^2,
xstep}\[IndentingNewLine]];\), \[IndentingNewLine]{i, xmin,
xmax^2, xstep}\[IndentingNewLine]]; \[IndentingNewLine]\
\[IndentingNewLine]m\[Lambda] =
Sqrt[Eigenvalues[MM]]; \[IndentingNewLine]M\[Lambda] = {M\[Lambda],
m\[Lambda]}; \[IndentingNewLine]\[Mu]\[Mu] = {\[Mu]\[Mu],
M*\((\[Mu] +
1.0)\)};, \[IndentingNewLine]\[IndentingNewLine]{\[Mu], \
\[Mu]min, \[Mu]max, \[Mu]step}\[IndentingNewLine]];\)\[IndentingNewLine]\
\[IndentingNewLine]\), "\[IndentingNewLine]",
\(\(Do[\[IndentingNewLine]Do[\[IndentingNewLine]\(Do[\[IndentingNewLine]k \
= {1.0 - \[Mu], 1.0 - \[Mu]}; \[IndentingNewLine]MM[\([i,
j]\)] = \((\((k/2 + gg[\([j]\)])\) . \((k/2 +
gg[\([j]\)])\))\)*
pp[\([i, j]\)];, \[IndentingNewLine]{j, xmin, xmax^2,
xstep}\[IndentingNewLine]];\), \[IndentingNewLine]{i, xmin,
xmax^2, xstep}\[IndentingNewLine]]; \[IndentingNewLine]\
\[IndentingNewLine]m\[Lambda] =
Sqrt[Eigenvalues[MM]]; \[IndentingNewLine]M\[Lambda] = {M\[Lambda],
m\[Lambda]}; \[IndentingNewLine]\[Mu]\[Mu] = {\[Mu]\[Mu],
M*\((2.0 + \@2.0*\[Mu])\)};, \[IndentingNewLine]\
\[IndentingNewLine]{\[Mu], \[Mu]min, \[Mu]max, \
\[Mu]step}\[IndentingNewLine]];\)\[IndentingNewLine]\[IndentingNewLine]\
\[IndentingNewLine]\), "\[IndentingNewLine]",
\(\(M\[Omega] =
Flatten[M\[Lambda]];\)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \[IndentingNewLine]\), \
"\[IndentingNewLine]",
\(\(M\[Mu] =
Flatten[\[Mu]\[Mu]];\)\[IndentingNewLine]\[IndentingNewLine] (*\
2*Pi*c/a\ *) \), "\[IndentingNewLine]",
\(\(zz = {M\[Mu], M\[Omega]};\)\), "\[IndentingNewLine]",
\(\(zzz = Transpose[zz];\)\), "\[IndentingNewLine]",
\(\(ListPlot[zzz, PlotRange \[Rule] {0, 1}];\)\), "\[IndentingNewLine]",
\(\(Export["\<pmb(2-D)1.dat\>",
zzz, "\<Table\>"];\)\[IndentingNewLine]\), "\[IndentingNewLine]",
\(Null\)}], "Input"],
Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .61803
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10 scalefont setfont
% Scaling calculations
0.0238095 0.278946 0 0.618034 [
[.16328 -0.0125 -9 -9 ]
[.16328 -0.0125 9 0 ]
[.30276 -0.0125 -3 -9 ]
[.30276 -0.0125 3 0 ]
[.44223 -0.0125 -9 -9 ]
[.44223 -0.0125 9 0 ]
[.5817 -0.0125 -3 -9 ]
[.5817 -0.0125 3 0 ]
[.72117 -0.0125 -9 -9 ]
[.72117 -0.0125 9 0 ]
[.86065 -0.0125 -3 -9 ]
[.86065 -0.0125 3 0 ]
[.01131 .12361 -18 -4.5 ]
[.01131 .12361 0 4.5 ]
[.01131 .24721 -18 -4.5 ]
[.01131 .24721 0 4.5 ]
[.01131 .37082 -18 -4.5 ]
[.01131 .37082 0 4.5 ]
[.01131 .49443 -18 -4.5 ]
[.01131 .49443 0 4.5 ]
[.01131 .61803 -6 -4.5 ]
[.01131 .61803 0 4.5 ]
[ 0 0 0 0 ]
[ 1 .61803 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 g
.25 Mabswid
[ ] 0 setdash
.16328 0 m
.16328 .00625 L
s
[(0.5)] .16328 -0.0125 0 1 Mshowa
.30276 0 m
.30276 .00625 L
s
[(1)] .30276 -0.0125 0 1 Mshowa
.44223 0 m
.44223 .00625 L
s
[(1.5)] .44223 -0.0125 0 1 Mshowa
.5817 0 m
.5817 .00625 L
s
[(2)] .5817 -0.0125 0 1 Mshowa
.72117 0 m
.72117 .00625 L
s
[(2.5)] .72117 -0.0125 0 1 Mshowa
.86065 0 m
.86065 .00625 L
s
[(3)] .86065 -0.0125 0 1 Mshowa
.125 Mabswid
.0517 0 m
.0517 .00375 L
s
.0796 0 m
.0796 .00375 L
s
.10749 0 m
.10749 .00375 L
s
.13539 0 m
.13539 .00375 L
s
.19118 0 m
.19118 .00375 L
s
.21907 0 m
.21907 .00375 L
s
.24697 0 m
.24697 .00375 L
s
.27486 0 m
.27486 .00375 L
s
.33065 0 m
.33065 .00375 L
s
.35854 0 m
.35854 .00375 L
s
.38644 0 m
.38644 .00375 L
s
.41433 0 m
.41433 .00375 L
s
.47012 0 m
.47012 .00375 L
s
.49802 0 m
.49802 .00375 L
s
.52591 0 m
.52591 .00375 L
s
.55381 0 m
.55381 .00375 L
s
.6096 0 m
.6096 .00375 L
s
.63749 0 m
.63749 .00375 L
s
.66539 0 m
.66539 .00375 L
s
.69328 0 m
.69328 .00375 L
s
.74907 0 m
.74907 .00375 L
s
.77696 0 m
.77696 .00375 L
s
.80486 0 m
.80486 .00375 L
s
.83275 0 m
.83275 .00375 L
s
.88854 0 m
.88854 .00375 L
s
.91644 0 m
.91644 .00375 L
s
.94433 0 m
.94433 .00375 L
s
.97223 0 m
.97223 .00375 L
s
.25 Mabswid
0 0 m
1 0 L
s
.02381 .12361 m
.03006 .12361 L
s
[(0.2)] .01131 .12361 1 0 Mshowa
.02381 .24721 m
.03006 .24721 L
s
[(0.4)] .01131 .24721 1 0 Mshowa
.02381 .37082 m
.03006 .37082 L
s
[(0.6)] .01131 .37082 1 0 Mshowa
.02381 .49443 m
.03006 .49443 L
s
[(0.8)] .01131 .49443 1 0 Mshowa
.02381 .61803 m
.03006 .61803 L
s
[(1)] .01131 .61803 1 0 Mshowa
.125 Mabswid
.02381 .0309 m
.02756 .0309 L
s
.02381 .0618 m
.02756 .0618 L
s
.02381 .09271 m
.02756 .09271 L
s
.02381 .15451 m
.02756 .15451 L
s
.02381 .18541 m
.02756 .18541 L
s
.02381 .21631 m
.02756 .21631 L
s
.02381 .27812 m
.02756 .27812 L
s
.02381 .30902 m
.02756 .30902 L
s
.02381 .33992 m
.02756 .33992 L
s
.02381 .40172 m
.02756 .40172 L
s
.02381 .43262 m
.02756 .43262 L
s
.02381 .46353 m
.02756 .46353 L
s
.02381 .52533 m
.02756 .52533 L
s
.02381 .55623 m
.02756 .55623 L
s
.02381 .58713 m
.02756 .58713 L
s
.25 Mabswid
.02381 0 m
.02381 .61803 L
s
0 0 m
1 0 L
1 .61803 L
0 .61803 L
closepath
clip
newpath
.008 w
.0266 .61187 Mdot
.0266 .61169 Mdot
.0266 .59017 Mdot
.0266 .43477 Mdot
.0266 .43368 Mdot
.0266 .4316 Mdot
.0266 .4087 Mdot
.0266 .00215 Mdot
.02939 .61218 Mdot
.02939 .61148 Mdot
.02939 .58987 Mdot
.02939 .43633 Mdot
.02939 .43369 Mdot
.02939 .4303 Mdot
.02939 .40844 Mdot
.02939 .0043 Mdot
.03218 .61269 Mdot
.03218 .61114 Mdot
.03218 .58939 Mdot
.03218 .43799 Mdot
.03218 .43372 Mdot
.03218 .42908 Mdot
.03218 .40802 Mdot
.03218 .00644 Mdot
.03497 .61336 Mdot
.03497 .61068 Mdot
.03497 .58875 Mdot
.03497 .43971 Mdot
.03497 .43375 Mdot
.03497 .42798 Mdot
.03497 .40743 Mdot
.03497 .00859 Mdot
.03776 .61418 Mdot
.03776 .61011 Mdot
.03776 .58798 Mdot
.03776 .44147 Mdot
.03776 .43379 Mdot
.03776 .42701 Mdot
.03776 .40668 Mdot
.03776 .01074 Mdot
.04055 .61511 Mdot
.04055 .60943 Mdot
.04055 .5871 Mdot
.04055 .44327 Mdot
.04055 .43384 Mdot
.04055 .42617 Mdot
.04055 .40575 Mdot
.04055 .01289 Mdot
.04334 .61615 Mdot
.04334 .60866 Mdot
.04334 .58612 Mdot
.04334 .44511 Mdot
.04334 .4339 Mdot
.04334 .42546 Mdot
.04334 .40468 Mdot
.04334 .01504 Mdot
.04613 .61727 Mdot
.04613 .60782 Mdot
.04613 .58508 Mdot
.04613 .44697 Mdot
.04613 .43398 Mdot
.04613 .42487 Mdot
.04613 .40346 Mdot
.04613 .01718 Mdot
.04891 .60691 Mdot
.04891 .58398 Mdot
.04891 .44885 Mdot
.04891 .43406 Mdot
.04891 .42439 Mdot
.04891 .40212 Mdot
.04891 .01933 Mdot
.0517 .60594 Mdot
.0517 .58283 Mdot
.0517 .45075 Mdot
.0517 .43414 Mdot
.0517 .42402 Mdot
.0517 .40067 Mdot
.0517 .02148 Mdot
.05449 .60492 Mdot
.05449 .58165 Mdot
.05449 .45266 Mdot
.05449 .43424 Mdot
.05449 .42372 Mdot
.05449 .39913 Mdot
.05449 .02363 Mdot
.05728 .60386 Mdot
.05728 .58044 Mdot
.05728 .45459 Mdot
.05728 .43435 Mdot
.05728 .42351 Mdot
.05728 .39751 Mdot
.05728 .02578 Mdot
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -