?? macroblock.c
字號(hào):
/*!
* \file
* Macroblock.c
* \brief
* Decode a Macroblock
* \author
* Main contributors (see contributors.h for copyright, address and affiliation details)
* Inge Lille-Lang鴜 <inge.lille-langoy@telenor.com>
* Rickard Sjoberg <rickard.sjoberg@era.ericsson.se>
* Jani Lainema <jani.lainema@nokia.com>
* Sebastian Purreiter <sebastian.purreiter@mch.siemens.de>
* Thomas Wedi <wedi@tnt.uni-hannover.de>
* Detlev Marpe <marpe@hhi.de>
* Gabi Blaettermann <blaetter@hhi.de>
*/
#include "contributors.h"
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include "global.h"
#include "elements.h"
#include "macroblock.h"
/************************************************************************
*
* Name : SetLoopfilterStrength_P()
*
* Description: Set the filter strength for a macroblock of a I- or P-frame
*
************************************************************************/
void SetLoopfilterStrength_P(struct img_par *img)
{
int i,j;
int ii,jj;
int i3,j3,mvDiffX,mvDiffY;
if (img->imod == INTRA_MB_OLD || img->imod == INTRA_MB_NEW)
{
for (i=0;i<BLOCK_MULTIPLE;i++)
{
ii=img->block_x+i;
i3=ii/2;
for (j=0;j<BLOCK_MULTIPLE;j++)
{
jj=img->block_y+j;
j3=jj/2;
loopb[ii+1][jj+1]=3;
loopb[ii ][jj+1]=max(loopb[ii ][jj+1],2);
loopb[ii+1][jj ]=max(loopb[ii+1][jj ],2);
loopb[ii+2][jj+1]=max(loopb[ii+2][jj+1],2);
loopb[ii+1][jj+2]=max(loopb[ii+1][jj+2],2);
loopc[i3+1][j3+1]=2;
loopc[i3 ][j3+1]=max(loopc[i3 ][j3+1],1);
loopc[i3+1][j3 ]=max(loopc[i3+1][j3 ],1);
loopc[i3+2][j3+1]=max(loopc[i3+2][j3+1],1);
loopc[i3+1][j3+2]=max(loopc[i3+1][j3+2],1);
}
}
}
else
{
for (i=0;i<4;i++)
{
ii=img->block_x+i;
i3=ii/2;
for (j=0;j<4;j++)
{
jj=img->block_y+j;
j3=jj/2;
mvDiffX = img->mv[ii+4][jj][0] - img->mv[ii-1+4][jj][0];
mvDiffY = img->mv[ii+4][jj][1] - img->mv[ii-1+4][jj][1];
if((mvDiffX*mvDiffX >= 16 || mvDiffY*mvDiffY >= 16) && ii > 0)
{
loopb[ii ][jj+1]=max(loopb[ii ][jj+1],1);
loopb[ii+1][jj+1]=max(loopb[ii+1][jj+1],1);
loopc[i3 ][j3+1]=max(loopc[i3 ][j3+1],1);
loopc[i3+1][j3+1]=max(loopc[i3+1][j3+1],1);
}
if(jj > 0) /*GH: bug fix to avoid img->mv[][-1][ii+4]*/
{
mvDiffX = img->mv[ii+4][jj][0] - img->mv[ii+4][jj-1][0];
mvDiffY = img->mv[ii+4][jj][1] - img->mv[ii+4][jj-1][1];
if(mvDiffX*mvDiffX >= 16 || mvDiffY*mvDiffY >= 16)
{
loopb[ii+1][jj ]=max(loopb[ii+1][jj ],1);
loopb[ii+1][jj+1]=max(loopb[ii+1][jj+1],1);
loopc[i3+1][j3 ]=max(loopc[i3+1][j3 ],1);
loopc[i3+1][j3+1]=max(loopc[i3+1][j3+1],1);
}
}
}
}
}
}
/************************************************************************
*
* Name : CheckAvailabilityOfNeighbors(struct img_par *img)
*
* Description: Checks the availability of neighboring macroblocks of
* the current macroblock for prediction and context determination;
* marks the unavailable MBs for intra prediction in the
* ipredmode-array by -1. Only neighboring MBs in the causal
* past of the current MB are checked.
*
************************************************************************/
void CheckAvailabilityOfNeighbors(struct img_par *img)
{
int i,j;
const int mb_width = img->width/MB_BLOCK_SIZE;
const int mb_nr = img->current_mb_nr;
Macroblock *currMB = &img->mb_data[mb_nr];
/* mark all neighbors as unavailable */
for (i=0; i<3; i++)
for (j=0; j<3; j++)
img->mb_data[mb_nr].mb_available[i][j]=NULL;
img->mb_data[mb_nr].mb_available[1][1]=currMB; /* current MB */
/* Check MB to the left */
if(img->pix_x >= MB_BLOCK_SIZE)
{
if(currMB->slice_nr != img->mb_data[mb_nr-1].slice_nr)
{
img->ipredmode[img->block_x][img->block_y+1] = -1;
img->ipredmode[img->block_x][img->block_y+2] = -1;
img->ipredmode[img->block_x][img->block_y+3] = -1;
img->ipredmode[img->block_x][img->block_y+4] = -1;
} else
currMB->mb_available[1][0]=&(img->mb_data[mb_nr-1]);
}
/* Check MB above */
if(img->pix_y >= MB_BLOCK_SIZE)
{
if(currMB->slice_nr != img->mb_data[mb_nr-mb_width].slice_nr)
{
img->ipredmode[img->block_x+1][img->block_y] = -1;
img->ipredmode[img->block_x+2][img->block_y] = -1;
img->ipredmode[img->block_x+3][img->block_y] = -1;
img->ipredmode[img->block_x+4][img->block_y] = -1;
} else
currMB->mb_available[0][1]=&(img->mb_data[mb_nr-mb_width]);
}
/* Check MB left above */
if(img->pix_x >= MB_BLOCK_SIZE && img->pix_y >= MB_BLOCK_SIZE )
{
if(currMB->slice_nr == img->mb_data[mb_nr-mb_width-1].slice_nr)
img->mb_data[mb_nr].mb_available[0][0]=&(img->mb_data[mb_nr-mb_width-1]);
}
/* Check MB right above */
if(img->pix_y >= MB_BLOCK_SIZE && img->pix_x < (img->width-MB_BLOCK_SIZE ))
{
if(currMB->slice_nr == img->mb_data[mb_nr-mb_width+1].slice_nr)
currMB->mb_available[0][2]=&(img->mb_data[mb_nr-mb_width+1]);
}
}
/************************************************************************
*
* Name : start_macroblock()
*
* Description: initializes the current macroblock
*
************************************************************************/
void start_macroblock(struct img_par *img,struct inp_par *inp)
{
int i,j,k,l;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
// Slice *curr_slice = img->currentSlice;
/* Save the slice number of this macroblock. When the macroblock below */
/* is coded it will use this to decide if prediction for above is possible */
img->slice_numbers[img->current_mb_nr] = img->current_slice_nr;
/* Save the slice and macroblock number of the current MB */
currMB->slice_nr = img->current_slice_nr;
/* If MB is next to a slice boundary, mark neighboring blocks unavailable for prediction */
CheckAvailabilityOfNeighbors(img);
/* Reset syntax element entries in MB struct */
currMB->mb_type = 0;
currMB->ref_frame = 0;
currMB->predframe_no = 0;
currMB->cbp = 0;
for (l=0; l < 2; l++)
for (j=0; j < BLOCK_MULTIPLE; j++)
for (i=0; i < BLOCK_MULTIPLE; i++)
for (k=0; k < 2; k++)
currMB->mvd[l][j][i][k] = 0;
for (i=0; i < (BLOCK_MULTIPLE*BLOCK_MULTIPLE); i++)
currMB->intra_pred_modes[i] = 0;
}
/************************************************************************
*
* Name : exit_macroblock()
*
* Description: set coordinates of the next macroblock
* check end_of_slice condition (have to implement)
*
************************************************************************/
int exit_macroblock(struct img_par *img,struct inp_par *inp)
{
const int number_mb_per_row = img->width / MB_BLOCK_SIZE ;
Slice *currSlice = img->currentSlice;
/* Update coordinates of the next macroblock */
img->mb_x++;
if (img->mb_x == number_mb_per_row) /* next row of MBs */
{
img->mb_x = 0; /* start processing of next row */
img->mb_y++;
}
img->current_mb_nr++;
/* Define vertical positions */
img->block_y = img->mb_y * BLOCK_SIZE; /* luma block position */
img->pix_y = img->mb_y * MB_BLOCK_SIZE; /* luma macroblock position */
img->pix_c_y = img->mb_y * MB_BLOCK_SIZE/2; /* chroma macroblock position */
/* Define horizontal positions */
img->block_x = img->mb_x * BLOCK_SIZE; /* luma block position */
img->pix_x = img->mb_x * MB_BLOCK_SIZE; /* luma pixel position */
img->pix_c_x = img->mb_x * MB_BLOCK_SIZE/2; /* chroma pixel position */
if (img->current_mb_nr == img->max_mb_nr)
{
if (currSlice->next_header != EOS)
currSlice->next_header = SOP;
return TRUE;
}
/* ask for last mb in the slice UVLC*/
else if(nal_startcode_follows(img, inp)==TRUE)
return TRUE;
else
return FALSE;
}
/************************************************************************
*
* Name : interpret_mb_mode_P()
*
* Description: Interpret the mb mode for P-Frames
*
************************************************************************/
void interpret_mb_mode_P(struct img_par *img)
{
const int ICBPTAB[6] = {0,16,32,15,31,47};
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
if (img->mb_mode == INTRA_MB) /* 4x4 intra */
img->imod = currMB->mb_imode = INTRA_MB_OLD;
if (img->mb_mode > INTRA_MB) /* 16x16 intra */
{
img->imod = currMB->mb_imode = INTRA_MB_NEW; //mod0=img->mb_mode-1;kmod=mod0 & 3;cbp = ICBPTAB[mod0/4];
currMB->intra_pred_modes[0] = (img->mb_mode - INTRA_MB-1) & 3;
currMB->cbp = ICBPTAB[(img->mb_mode - INTRA_MB-1)>>2];
}
if (img->mb_mode < INTRA_MB) /* inter prediction mode (block shape) */
img->imod = currMB->mb_imode = INTRA_MB_INTER; /* intra in inter frame */
}
/************************************************************************
*
* Name : interpret_mb_mode_I()
*
* Description: Interpret the mb mode for I-Frames
*
************************************************************************/
void interpret_mb_mode_I(struct img_par *img)
{
const int ICBPTAB[6] = {0,16,32,15,31,47};
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
if (img->mb_mode == 0)
img->imod = currMB->mb_imode = INTRA_MB_OLD; /* 4x4 intra */
else
{
img->imod = currMB->mb_imode = INTRA_MB_NEW; /* 16x16 intra */ //mod0=img->mb_mode-1;kmod=mod0 & 3;cbp = ICBPTAB[mod0/4];
currMB->intra_pred_modes[0] = (img->mb_mode - 1) & 3;
currMB->cbp = ICBPTAB[(img->mb_mode - 1)>>2];
}
}
/************************************************************************
*
* Name : interpret_mb_mode_B()
*
* Description: Interpret the mb mode for B-Frames
*
************************************************************************/
void interpret_mb_mode_B(struct img_par *img)
{
const int ICBPTAB[6] = {0,16,32,15,31,47};
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
if (img->mb_mode == INTRA_MB_B) /* 4x4 intra */
img->imod = currMB->mb_imode = INTRA_MB_OLD;
if (img->mb_mode > INTRA_MB_B) /* 16x16 intra */
{
img->imod = currMB->mb_imode = INTRA_MB_NEW;
currMB->intra_pred_modes[0] = (img->mb_mode - INTRA_MB_B-1) & 3;
currMB->cbp = ICBPTAB[(img->mb_mode - INTRA_MB_B-1)>>2];
}
if (img->mb_mode < INTRA_MB_B) /* intra in inter frame */
{
if(img->mb_mode == 0)
img->imod = currMB->mb_imode = B_Direct;
else if(img->mb_mode == 3)
img->imod = currMB->mb_imode = B_Bidirect;
else if(img->mb_mode==1 || (img->mb_mode>3 && img->mb_mode%2==0))
img->imod = currMB->mb_imode = B_Forward;
else if(img->mb_mode==2 || (img->mb_mode>4 && img->mb_mode%2==1))
img->imod = currMB->mb_imode = B_Backward;
else img->imod = 3/img->mb_mode;
}
}
/************************************************************************
*
* Name : init_macroblock()
*
* Description: init macroblock I and P frames
*
************************************************************************/
void init_macroblock(struct img_par *img)
{
int i,j;
int predframe_no;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
img->mv[img->block_x+4][img->block_y][2]=img->number;
for (i=0;i<BLOCK_SIZE;i++)
{ /* reset vectors and pred. modes */
for(j=0;j<BLOCK_SIZE;j++)
{
img->mv[img->block_x+i+4][img->block_y+j][0] = 0;
img->mv[img->block_x+i+4][img->block_y+j][1] = 0;
img->ipredmode[img->block_x+i+1][img->block_y+j+1] = 0;
}
}
currMB->ref_frame = img->frame_cycle;
currMB->predframe_no = predframe_no = 0;//g.b.1;
/* Set the reference frame information for motion vector prediction */
if (img->imod == INTRA_MB_OLD || img->imod == INTRA_MB_NEW)
for (j = 0;j < BLOCK_SIZE;j++)
for (i = 0;i < BLOCK_SIZE;i++)
refFrArr[img->block_y+j][img->block_x+i] = -1;
else
for (j = 0;j < BLOCK_SIZE;j++)
for (i = 0;i < BLOCK_SIZE;i++)
refFrArr[img->block_y+j][img->block_x+i] = predframe_no;
}
/************************************************************************
*
* Name : read_one_macroblock()
*
* Description: Get the syntax elements from the NAL
*
************************************************************************/
int read_one_macroblock(struct img_par *img,struct inp_par *inp)
{
int i, i1, j1;
SyntaxElement currSE;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
Slice *currSlice = img->currentSlice;
DataPartition *dP;
int *partMap = assignSE2partition[inp->partition_mode];
int dbl_ipred_word;
/* read MB mode ******************************************************************/
if (inp->symbol_mode == UVLC)
currSE.mapping = linfo;
else
currSE.reading = readMB_typeInfoFromBuffer_CABAC;
currSE.type = SE_MBTYPE;
dP = &(currSlice->partArr[partMap[currSE.type]]);
#if TRACE
strcpy(currSE.tracestring, "MB Type");
#endif
dP->readSyntaxElement(&currSE,img,inp,dP);
img->mb_mode = currMB->mb_type = currSE.value1;
if ((img->type==INTER_IMG_1) || (img->type==INTER_IMG_MULT)) /* inter frame */
interpret_mb_mode_P(img);
else if (img->type==INTRA_IMG) /* intra frame */
interpret_mb_mode_I(img);
else if ((img->type==B_IMG_1) || (img->type==B_IMG_MULT)) /* B frame */
interpret_mb_mode_B(img);
if ((img->type==B_IMG_1) || (img->type==B_IMG_MULT))
init_macroblock_Bframe(img);
else
init_macroblock(img);
if (img->imod==INTRA_MB_INTER && img->mb_mode==COPY_MB) /*keep last macroblock*/
{
return DECODE_COPY_MB;
}
/* intra prediction modes for a macroblock 4x4 ***********************************************/
if (img->imod==INTRA_MB_OLD)
{
if (inp->symbol_mode == UVLC)
currSE.mapping = linfo;
else
currSE.reading = readIntraPredModeFromBuffer_CABAC;
currSE.type = SE_INTRAPREDMODE;
dP = &(currSlice->partArr[partMap[currSE.type]]);
for(i=0;i<MB_BLOCK_SIZE/2;i++)
{
#if TRACE
sprintf(currSE.tracestring, "Intra mode ");
#endif
dP->readSyntaxElement(&currSE,img,inp,dP);
i1=img->block_x + 2*(i&0x01);
j1=img->block_y + i/2;
if (inp->symbol_mode == UVLC)
{
dbl_ipred_word = currSE.value1;
/* find intra prediction mode for two blocks */
img->ipredmode[i1+1][j1+1] = PRED_IPRED[img->ipredmode[i1+1][j1]+1][img->ipredmode[i1][j1+1]+1][IPRED_ORDER[dbl_ipred_word][0]];
img->ipredmode[i1+2][j1+1] = PRED_IPRED[img->ipredmode[i1+2][j1]+1][img->ipredmode[i1+1][j1+1]+1][IPRED_ORDER[dbl_ipred_word][1]];
}
else
{
img->ipredmode[i1+1][j1+1] = PRED_IPRED[img->ipredmode[i1+1][j1]+1][img->ipredmode[i1][j1+1]+1][currSE.value1];
img->ipredmode[i1+2][j1+1] = PRED_IPRED[img->ipredmode[i1+2][j1]+1][img->ipredmode[i1+1][j1+1]+1][currSE.value2];
}
}
}
/* read inter frame vector data *********************************************************/
if ((img->type==B_IMG_1) || (img->type==B_IMG_MULT))
readMotionInfoFromNAL_Bframe(img,inp);
else if(img->imod==INTRA_MB_INTER)
readMotionInfoFromNAL_Pframe(img,inp);
/* read CBP and Coeffs ****************************************************************/
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -