亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? layer.h

?? 也是遺傳算法的源代碼
?? H
字號:
/***************************************************************************                          layer.h  -  description                             -------------------    begin                : Wed Apr 11 2001    copyright            : (C) 2001 by Matt Grover    email                : mgrover@amygdala.org ***************************************************************************//*************************************************************************** *                                                                         * *   This program is free software; you can redistribute it and/or modify  * *   it under the terms of the GNU General Public License as published by  * *   the Free Software Foundation; either version 2 of the License, or     * *   (at your option) any later version.                                   * *                                                                         * ***************************************************************************/#ifndef LAYER_H#define LAYER_Husing namespace std;#include <vector>#include <string>#include <amygdala/neuron.h>#include <amygdala/network.h>#include <amygdala/types.h>class Network;class Neuron;/** @class Layer layer.h amygdala/layer.h  * @brief Layer groups a number of Neurons for convenience. Layer is not needed to  * operate the network.  *  * The only limitation currently is that unlayered Networks  * cannot be loaded or saved. This limitation should be addressed in 0.3.  * @see Neuron, Network, NetLoader  *@author Matt Grover  */class Layer {public:    Layer();    ~Layer();    friend class Network;    /** Add a pre instantiated Neuron to the Layer. This doesn't affect the      * ownership of the Neuron until the Layer is added to a Network. At that      * point, the Network will assume ownership of the pointer. Neurons that      * are added to layers do not need to be added to a Network separately.      * @param nrn Pointer to a Neuron object that will be added to the Layer.      * @see Network::AddLayer() */    void AddNeuron(Neuron* nrn);    /** Add pre instantiated Neuron objects to the Layer. This doesn't affect the      * ownership of the Neuron until the Layer is added to a Network. At that      * point, the Network will assume ownership of the pointer. Neurons that      * are added to layers do not need to be added to a Network separately.      * @param nrnVec Vector of pointers to Neuron objects that will be      * added to the Layer.      * @see Network::AddLayer() */    void AddNeuronVector(vector<Neuron*> nrnVec);	    /** Set the name of the Layer.  This is optional,     * but it can be useful after reloading a Network from     * a file.     * @param name Name of the Layer. */	void LayerName(string name) { layerName = name; }		/** Retrieve the name of the Layer,	 * @returns Layer name. */	string LayerName() { return layerName; }		/** Set the unique numeric ID for the Layer.	 * @param id Numeric id. */	void SetLayerId(unsigned int id) { layerId = id; }		/** Get the numeric ID of the Layer.	 * @returns Numeric ID. */	unsigned int LayerId() { return layerId; }		/** Designate what kind of layer this is	 * @parap ltype layer type. */	void SetLayerType(LayerType ltype) { layerType = ltype; }		/** Get the layer type	 * @returns layer type */	LayerType GetLayerType() { return layerType; }		/** Set the percentage of neurons that should be inhibitory	 * in the layer.  This value can be overridden if it is	 * also set in ConnectLayers if Neuron::EnforceSign() has not	 * been called.	 * @param percent Percentage of neurons that are inhibitory (0 - 100.0)	 * @see Neuron::EnforceSign() */	void SetPercentInhibitory( float percent );		/** Connect this layer to to another layer.	 * @param output Layer that will receive input from this	 * layer.	 * @param parms Uniform connection parameters.  Layers	 * connected with this parameter type will have weights	 * set from a uniform random distribution.	 * @param pctInhibitory If Neuron::EnforceSign() has not been set	 * prior to connecting the layers, then this can be used to set the number of	 * connections to output that will have a negative weight.	 * pctInhibitory will be ignored if sign enforcement has been	 * turned on and must be in the range 0 -> 100.0.     * @see Node::ConnectLayers() */	bool ConnectLayers(Layer* output, UniConnectType parms, float pctInhibitory = 0.0);		/** Connect this layer to to another layer.	 * @param output Layer that will receive input from this	 * layer.	 * @param parms Gaussian connection parameters.  Layers	 * connected with this parameter type will have weights	 * set from a random Gaussian distribution.	 * @param pctInhibitory If Neuron::EnforceSign() has not been set	 * prior to connecting the layers, then this can be used to set the number of	 * connections to output that will have a negative weight.	 * pctInhibitory will be ignored if sign enforcement has been	 * turned on and must be in the range 0 -> 100.0.     * @see Node::ConnectLayers() */	bool ConnectLayers(Layer* output, GaussConnectType parms, float pctInhibitory = 0.0);		/** Set constants that should be common to all neurons	 * in a layer, such  as time constants and learning constants.	 * This is optional and layers can be constructed without requiring	 * that all member Neurons have the constants.	 * @param lconst Layer constant structure.	 * @see GetLayerConstants() */	bool SetLayerConstants(LayerConstants lconst);	    /** Retrieve the set of constants that are common to     * all Neurons in a layer if they have been previously set.     * @returns LayerConstants struct.     * @see SetLayerConstants() */    LayerConstants GetLayerConstants();	    /** Set the default spike transmission delay.     * @param delay The value of the delay in microseconds (us). */    void SetSynapticDelay(AmTimeInt delay) { synapticDelay = delay; }    /** Get the default spike transmission delay.     * @returns The value of the delay in microseconds (us). */    AmTimeInt GetSynapticDelay() const { return synapticDelay; }	/*	 * Types and members refering to vector	 */		/** @returns The size of the layer. */    unsigned int size() { return nrnLayer.size(); }    typedef vector<Neuron*>::iterator iterator;    typedef vector<Neuron*>::const_iterator const_iterator;    typedef vector<Neuron*>::reverse_iterator reverse_iterator;    typedef vector<Neuron*>::const_reverse_iterator const_reverse_iterator;    /** @returns An iterator (vector<Neuron*>) pointing to the first neuron in the layer. */    iterator begin() { return nrnLayer.begin(); }    /** @returns An iterator (vector<Neuron*>) pointing to the last neuron in the layer. */    iterator end() { return nrnLayer.end(); }    /** @returns An iterator (vector<Neuron*>) pointing to the first neuron in the layer. */    const_iterator begin() const { return nrnLayer.begin(); }    /** @returns An iterator (vector<Neuron*>) pointing to the last neuron in the layer. */    const_iterator end() const { return nrnLayer.end(); }    /** @returns A reverse iterator (vector<Neuron*>) pointing to the first neuron in the layer. */    reverse_iterator rbegin() { return nrnLayer.rbegin(); }    /** @returns A reverse iterator (vector<Neuron*>) pointing to the last neuron in the layer. */    reverse_iterator rend() { return nrnLayer.rend(); }    /** @returns A reverse iterator (vector<Neuron*>) pointing to the first neuron in the layer. */    const_reverse_iterator rbegin() const { return nrnLayer.rbegin(); }    /** @returns A reverse iterator (vector<Neuron*>) pointing to the last neuron in the layer. */    const_reverse_iterator rend() const { return nrnLayer.rend(); }    /** @returns A pointer to a member Neuron.  The index is not related     * to the NeuronID. */    Neuron* operator[](unsigned int& index) { return nrnLayer[index]; }	protected:    void SetLayerParent(Network* parent);	inline bool ConnectionInhibitory(float& pctInhibitory);	    vector<Neuron*> nrnLayer;    Network* parentNet;    string layerName;    LayerType layerType;    unsigned int layerId;    // Defaults for member neurons    float learningConst;    float memTimeConst;    float synTimeConst;    float restPtnl;    float thresholdPtnl;    bool constantsSet;    float percentInhib;    AmTimeInt synapticDelay;};#endif

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美国产丝袜视频| 国产拍揄自揄精品视频麻豆| 国产在线不卡视频| 夜夜亚洲天天久久| 国产亚洲一区字幕| 91精彩视频在线| 一区二区三区不卡视频在线观看| 日韩欧美一区中文| 欧美在线一区二区三区| 顶级嫩模精品视频在线看| 亚洲bt欧美bt精品| 国产精品毛片久久久久久久| 日韩免费看的电影| 欧美三级韩国三级日本一级| 成人免费视频网站在线观看| 久久av资源网| 日本人妖一区二区| 一区二区免费视频| 亚洲欧洲精品一区二区三区不卡| 精品欧美乱码久久久久久1区2区| 欧美视频中文字幕| 日本福利一区二区| 不卡视频在线观看| 豆国产96在线|亚洲| 国产在线精品视频| 久久国产精品72免费观看| 性做久久久久久久免费看| 一区二区三区欧美久久| 国产精品福利一区二区三区| 国产亚洲欧洲一区高清在线观看| 欧美一级欧美一级在线播放| 777a∨成人精品桃花网| 欧美日韩一级大片网址| 欧美吞精做爰啪啪高潮| 色婷婷激情综合| 色94色欧美sute亚洲线路一久| 成人激情免费视频| 波多野结衣亚洲| 成人精品视频.| a在线播放不卡| 99r国产精品| 91麻豆精品视频| 波多野结衣一区二区三区| proumb性欧美在线观看| 99久久精品国产观看| 成av人片一区二区| 色婷婷国产精品综合在线观看| 不卡大黄网站免费看| 9l国产精品久久久久麻豆| 99久久久国产精品| 日本高清视频一区二区| 欧美日韩亚洲综合| 在线播放欧美女士性生活| 日韩一级片网址| 精品国产一区二区三区av性色| 精品三级在线观看| 欧美国产综合色视频| 国产精品久线在线观看| 亚洲精品ww久久久久久p站| 一区二区三区中文免费| 亚洲va欧美va国产va天堂影院| 一区二区三区自拍| 蜜桃av一区二区在线观看| 激情文学综合丁香| 不卡欧美aaaaa| 欧美亚洲动漫另类| 欧美www视频| 国产精品久久久久久户外露出| 亚洲黄色小视频| 蜜芽一区二区三区| 成人爽a毛片一区二区免费| 日本道色综合久久| 日韩亚洲欧美综合| 国产精品久久三| 亚洲va国产天堂va久久en| 国精产品一区一区三区mba视频| 成人一区二区在线观看| 欧美视频一区二区三区| 精品1区2区在线观看| 亚洲视频免费在线| 日韩av一级片| av高清久久久| 欧美二区乱c少妇| 欧美成人aa大片| 欧美不卡在线视频| 欧美一区二区三区在线观看视频 | 亚洲日本一区二区| 偷拍一区二区三区| 大美女一区二区三区| 欧美日韩一区国产| 国产欧美一区二区精品婷婷| 亚洲影视资源网| 国产丶欧美丶日本不卡视频| 欧美图区在线视频| 中文字幕精品一区| 日本中文字幕一区| 91网站最新地址| 久久久噜噜噜久久人人看| 亚洲第一成年网| 成人午夜精品一区二区三区| 欧美一区二区日韩一区二区| 日韩美女精品在线| 国产一区二区91| 欧美一区二区黄| 亚洲综合免费观看高清完整版| 国产精品亚洲综合一区在线观看| 欧美喷水一区二区| 亚洲人成网站精品片在线观看| 国产一区免费电影| 日韩欧美成人一区二区| 亚洲香肠在线观看| 91在线观看视频| 欧美国产精品一区| 国产一区二区三区在线观看免费| 欧美日本国产视频| 一区二区三区不卡视频| 99久久精品免费观看| 欧美国产日产图区| 国产剧情在线观看一区二区| 日韩精品中文字幕在线一区| 亚洲国产婷婷综合在线精品| 91亚洲精品久久久蜜桃网站 | 高清在线不卡av| 欧美一区二区视频在线观看| 亚洲第一av色| 欧美日韩一区二区在线观看视频 | 日韩欧美在线网站| 日韩成人免费在线| 7777女厕盗摄久久久| 午夜精品久久久久久久99水蜜桃| 色噜噜狠狠成人网p站| 亚洲乱码国产乱码精品精小说| 成人精品在线视频观看| 国产精品免费av| 成人aa视频在线观看| 国产精品嫩草影院av蜜臀| 高潮精品一区videoshd| 国产视频在线观看一区二区三区| 狠狠色综合日日| 久久久99精品久久| 国产大片一区二区| 国产欧美一区二区精品婷婷| 国产iv一区二区三区| 国产精品热久久久久夜色精品三区 | 久久精品人人做| 国产91精品精华液一区二区三区| 国产欧美综合在线| 99视频有精品| 亚洲自拍偷拍九九九| 欧美日本一道本| 久久av资源站| 日本一区二区三区四区在线视频| 成人小视频免费在线观看| 国产精品久久久久久久久快鸭 | 日韩不卡在线观看日韩不卡视频| 这里只有精品电影| 国产伦精品一区二区三区免费迷 | 国产一区二区三区日韩 | 亚洲欧美日韩国产手机在线| 色噜噜狠狠成人中文综合 | 精品影视av免费| 日本一区二区免费在线| 91视频com| 天天av天天翘天天综合网色鬼国产| 制服丝袜亚洲网站| 国产a视频精品免费观看| 亚洲乱码日产精品bd| 国产精品传媒入口麻豆| 欧美人妖巨大在线| 亚洲自拍偷拍av| 欧美一区二区三区免费在线看| 91精品国产综合久久精品| 久久99在线观看| 中文字幕日韩一区| 在线播放国产精品二区一二区四区| 精品制服美女久久| 一区二区三区中文字幕精品精品 | 国产美女一区二区三区| 亚洲欧美色综合| 日韩一区二区三区视频在线观看| 国产二区国产一区在线观看| 一区二区三区中文在线观看| 精品日韩欧美一区二区| 成人精品高清在线| 免费在线观看一区| 亚洲天堂av一区| 日韩女优av电影在线观看| 99久久伊人久久99| 日韩av在线播放中文字幕| 日韩一区在线看| 精品国产精品一区二区夜夜嗨| 成人天堂资源www在线| 日韩专区一卡二卡| 中文字幕一区二区三区在线播放| 日韩亚洲欧美综合| 在线观看日韩毛片| 国产91在线|亚洲| 欧美aaa在线| 一区二区三区在线高清| 久久久一区二区三区捆绑**|