?? strmctxt.cpp
字號:
// -----------------------------------------------------------------------------
//
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
// PARTICULAR PURPOSE.
// Copyright (c) 1995-2000 Microsoft Corporation. All rights reserved.
//
// -----------------------------------------------------------------------------
#include "wavemain.h"
HRESULT StreamContext::Open(DeviceContext *pDeviceContext, LPWAVEOPENDESC lpWOD, DWORD dwFlags)
{
m_RefCount = 1;
m_pDeviceContext = pDeviceContext;
m_pfnCallback = (DRVCALLBACK *)lpWOD->dwCallback;
m_dwInstance = lpWOD->dwInstance;
m_hWave = lpWOD->hWave;
m_dwFlags = dwFlags;
m_bRunning = FALSE;
m_bForceSpeaker = FALSE;
// If it's a PCMWAVEFORMAT struct, it's smaller than a WAVEFORMATEX struct (it doesn't have the cbSize field),
// so don't copy too much or we risk a fault if the structure is located on the end of a page.
// All other non-PCM wave formats share the WAVEFORMATEX base structure
// Note: I don't keep around anything after the cbSize of the WAVEFORMATEX struct so that I don't need to
// worry about allocating additional space. If we need to keep this info around in the future, we can either
// allocate it dynamically here, or keep the information in any derived format-specific classes.
DWORD dwSize;
WAVEFORMATEX *pwfx = lpWOD->lpFormat;
if (pwfx->wFormatTag == WAVE_FORMAT_PCM)
{
dwSize = sizeof(PCMWAVEFORMAT);
m_WaveFormat.cbSize = 0;
}
else
{
dwSize = sizeof(WAVEFORMATEX);
}
memcpy(&m_WaveFormat,pwfx,dwSize);
m_lpWaveHdrHead = NULL;
m_lpWaveHdrTail = NULL;
m_lpWaveHdrCurrent = NULL;
m_lpCurrData = NULL;
m_lpCurrDataEnd = NULL;
m_dwByteCount = 0;
m_dwLoopCount = 0;
m_SecondaryGainClass=0;
SetGain(pDeviceContext->GetDefaultStreamGain()); // Set gain to default value
// DEBUGMSG(1, (TEXT("Opening stream 0x%x\r\n"),this));
// Add stream to list. This will start playback.
pDeviceContext->NewStream(this);
DoCallbackStreamOpened();
return S_OK;
}
DWORD StreamContext::Close()
{
if (StillPlaying())
{
return WAVERR_STILLPLAYING;
}
// Be sure to turn off speaker if we turned it on.
ForceSpeaker(FALSE);
// DEBUGMSG(1, (TEXT("Closing stream 0x%x\r\n"),this));
DoCallbackStreamClosed();
return MMSYSERR_NOERROR;
}
// Assumes lock is taken
LONG StreamContext::AddRef()
{
LONG RefCount = ++m_RefCount;
// DEBUGMSG(1, (TEXT("AddRef stream 0x%x, RefCount=%d\r\n"),this,RefCount));
return RefCount;
}
// Assumes lock is taken
LONG StreamContext::Release()
{
LONG RefCount = --m_RefCount;
// DEBUGMSG(1, (TEXT("Releasing stream 0x%x, RefCount=%d\r\n"),this,RefCount));
if (RefCount==0)
{
// DEBUGMSG(1, (TEXT("Deleting stream 0x%x\r\n"),this));
// Only remove stream from list when all refcounts are gone.
m_pDeviceContext->DeleteStream(this);
delete this;
}
return RefCount;
}
DWORD StreamContext::QueueBuffer(LPWAVEHDR lpWaveHdr)
{
if (!(lpWaveHdr->dwFlags & WHDR_PREPARED))
{
return WAVERR_UNPREPARED;
}
lpWaveHdr->dwFlags |= WHDR_INQUEUE;
lpWaveHdr->dwFlags &= ~WHDR_DONE;
lpWaveHdr->lpNext=NULL;
lpWaveHdr->dwBytesRecorded=0;
if (!m_lpWaveHdrHead)
{
m_lpWaveHdrHead = lpWaveHdr;
}
else
{
m_lpWaveHdrTail->lpNext=lpWaveHdr;
}
m_lpWaveHdrTail=lpWaveHdr;
// Note: Even if head & tail are valid, current may be NULL if we're in the middle of
// a loop and ran out of data. So, we need to check specifically against current to
// decide if we need to initialize it.
if (!m_lpWaveHdrCurrent)
{
m_lpWaveHdrCurrent = lpWaveHdr;
m_lpCurrData = (PBYTE)lpWaveHdr->lpData;
m_lpCurrDataEnd = (PBYTE)lpWaveHdr->lpData + lpWaveHdr->dwBufferLength;
if (lpWaveHdr->dwFlags & WHDR_BEGINLOOP) // if this is the start of a loop block
{
m_dwLoopCount = lpWaveHdr->dwLoops; // save # of loops
}
}
if (m_bRunning)
{
m_pDeviceContext->StreamReadyToRender(this);
}
return MMSYSERR_NOERROR;
}
// Note: I've found that when we return used buffers, the wave manager may
// call back into the wave driver in the same thread context to close the stream when
// we return the last buffer.
// If it wasn't the last buffer, the close call will return MMSYSERR_STILLPLAYING.
// However, if it was the last buffer, the close will proceed, and the
// stream may be deleted out from under us. Note that a Lock won't help us here,
// since we're in the same thread which already owns the lock.
// The solution to this is the AddRef/Release use on the stream context, which keeps it
// around if we're acessing it, even if it's closed.
// Assumes lock is taken
PBYTE StreamContext::GetNextBuffer()
{
LPWAVEHDR lpOldHdr;
LPWAVEHDR lpNewHdr;
LPSTR pNewBuf=NULL;
// Get a pointer to the current buffer which is now done being processed
lpOldHdr=m_lpWaveHdrCurrent;
if (!lpOldHdr)
{
return NULL;
}
// Are we in a loop
// Note: a loopcount of 1 means we're not really in a loop
if (m_dwLoopCount>1)
{
// We're in a loop!
if (lpOldHdr->dwFlags & WHDR_ENDLOOP)
{
// In loop, last buffer
// If dwLoopCount was set to INFINITE, loop forever
// (Note: this is not explicitly in the wave driver API spec)
if (m_dwLoopCount!=INFINITE)
{
m_dwLoopCount--; // decrement loop count
}
lpNewHdr=m_lpWaveHdrHead; // go back to start of loop
}
else
{
// In loop, intermediate buffer
lpNewHdr=lpOldHdr->lpNext; // just go to next buffer in loop block
}
lpOldHdr=NULL;
}
else
{
// Not in a loop; return old buffer and get new buffer
lpNewHdr=lpOldHdr->lpNext;
m_lpWaveHdrHead = lpNewHdr; // reset list head
if (!lpNewHdr)
{
m_lpWaveHdrTail=NULL; // no new buffer, reset tail to NULL
}
else if (lpNewHdr->dwFlags & WHDR_BEGINLOOP) // if new buffer is start of a loop block
{
m_dwLoopCount=lpNewHdr->dwLoops; // save # of loops
}
}
m_lpWaveHdrCurrent=lpNewHdr; // save current buffer pointer
if (lpNewHdr)
{
m_lpCurrData = (PBYTE)lpNewHdr->lpData; // reinitialize data pointer
m_lpCurrDataEnd = m_lpCurrData + lpNewHdr->dwBufferLength;
}
else
{
m_lpCurrData = NULL;
m_lpCurrDataEnd = NULL;
}
// Return the old buffer
// This may cause the stream to be destroyed, so make sure that any calls to this function
// are within an AddRef/Release block
if (lpOldHdr)
{
ReturnBuffer(lpOldHdr);
}
return m_lpCurrData;
}
DWORD StreamContext::BreakLoop()
{
AddRef();
if (m_dwLoopCount>0)
{
m_dwLoopCount = 0;
LPWAVEHDR lpHdr;
while (m_lpWaveHdrHead!=m_lpWaveHdrCurrent)
{
lpHdr = m_lpWaveHdrHead;
m_lpWaveHdrHead = lpHdr->lpNext;
if (m_lpWaveHdrHead==NULL)
{
m_lpWaveHdrTail=NULL;
}
ReturnBuffer(lpHdr);
}
}
Release();
return MMSYSERR_NOERROR;
}
// Gain table
// Calculated as: 0x10000 * exp(dBGain/20), for dBGain from 0 to -63
// Sample code to generate using VC++
//
// #include "stdafx.h"
// #include "math.h"
//
// const int NumEntries = 64;
// const double fdBMin = -100;
//
// int main(int argc, char* argv[])
// {
// const double fNumEntries = ((double)(NumEntries-1));
// for (int i=0;i<NumEntries;i++)
// {
// double fVol = fdBMin * ((double)(i)) / fNumEntries;
// double fMulVal = exp(fVol/20);
// unsigned long MulVal = (unsigned long)(fMulVal * (double)0x10000);
// printf("0x%04x, // %d: %f dB\n",MulVal,i,fVol);
// }
// return 0;
// }
//
const DWORD GainMap[] =
{
0x10000, // 0: 0.000000 dB
0xec77, // 1: -1.587302 dB
0xda6d, // 2: -3.174603 dB
0xc9c2, // 3: -4.761905 dB
0xba5d, // 4: -6.349206 dB
0xac25, // 5: -7.936508 dB
0x9f03, // 6: -9.523810 dB
0x92e1, // 7: -11.111111 dB
0x87ac, // 8: -12.698413 dB
0x7d52, // 9: -14.285714 dB
0x73c2, // 10: -15.873016 dB
0x6aed, // 11: -17.460317 dB
0x62c5, // 12: -19.047619 dB
0x5b3b, // 13: -20.634921 dB
0x5445, // 14: -22.222222 dB
0x4dd7, // 15: -23.809524 dB
0x47e7, // 16: -25.396825 dB
0x426b, // 17: -26.984127 dB
0x3d59, // 18: -28.571429 dB
0x38ab, // 19: -30.158730 dB
0x3458, // 20: -31.746032 dB
0x305a, // 21: -33.333333 dB
0x2ca9, // 22: -34.920635 dB
0x2941, // 23: -36.507937 dB
0x261b, // 24: -38.095238 dB
0x2333, // 25: -39.682540 dB
0x2083, // 26: -41.269841 dB
0x1e08, // 27: -42.857143 dB
0x1bbe, // 28: -44.444444 dB
0x19a0, // 29: -46.031746 dB
0x17ab, // 30: -47.619048 dB
0x15dd, // 31: -49.206349 dB
0x1432, // 32: -50.793651 dB
0x12a7, // 33: -52.380952 dB
0x113b, // 34: -53.968254 dB
0x0fea, // 35: -55.555556 dB
0x0eb3, // 36: -57.142857 dB
0x0d94, // 37: -58.730159 dB
0x0c8b, // 38: -60.317460 dB
0x0b96, // 39: -61.904762 dB
0x0ab4, // 40: -63.492063 dB
0x09e3, // 41: -65.079365 dB
0x0921, // 42: -66.666667 dB
0x086f, // 43: -68.253968 dB
0x07ca, // 44: -69.841270 dB
0x0732, // 45: -71.428571 dB
0x06a6, // 46: -73.015873 dB
0x0624, // 47: -74.603175 dB
0x05ac, // 48: -76.190476 dB
0x053d, // 49: -77.777778 dB
0x04d7, // 50: -79.365079 dB
0x0478, // 51: -80.952381 dB
0x0421, // 52: -82.539683 dB
0x03d0, // 53: -84.126984 dB
0x0386, // 54: -85.714286 dB
0x0341, // 55: -87.301587 dB
0x0301, // 56: -88.888889 dB
0x02c6, // 57: -90.476190 dB
0x0290, // 58: -92.063492 dB
0x025e, // 59: -93.650794 dB
0x0230, // 60: -95.238095 dB
0x0205, // 61: -96.825397 dB
0x01de, // 62: -98.412698 dB
0x01b9, // 63: -100.000000 dB
};
DWORD StreamContext::MapGain(DWORD Gain)
{
DWORD TotalGain = Gain & 0xFFFF;
DWORD SecondaryGain = m_pDeviceContext->GetSecondaryGainLimit(m_SecondaryGainClass) & 0xFFFF;
if (m_SecondaryGainClass < SECONDARYDEVICEGAINCLASSMAX)
{
// Apply device gain
DWORD DeviceGain = m_pDeviceContext->GetGain() & 0xFFFF;
TotalGain *= DeviceGain;
TotalGain += 0xFFFF; // Round up
TotalGain >>= 16; // Shift to lowest 16 bits
}
// Apply secondary gain
TotalGain *= SecondaryGain;
TotalGain += 0xFFFF; // Round up
TotalGain >>= 16; // Shift to lowest 16 bits
// Special case 0 as totally muted
if (TotalGain==0)
{
return 0;
}
// Convert to index into table
DWORD Index = 63 - (TotalGain>>10);
return GainMap[Index];
}
DWORD StreamContext::GetPos(PMMTIME pmmt)
{
switch (pmmt->wType)
{
case TIME_SAMPLES:
pmmt->u.sample = (m_dwByteCount * 8) /
(m_WaveFormat.nChannels * m_WaveFormat.wBitsPerSample);
break;
case TIME_MS:
if (m_WaveFormat.nAvgBytesPerSec != 0)
{
pmmt->u.ms = (m_dwByteCount * 1000) / m_WaveFormat.nAvgBytesPerSec;
break;
}
// If we don't know avg bytes per sec, fall through to TIME_BYTES
default:
// Anything else, return TIME_BYTES instead.
pmmt->wType = TIME_BYTES;
// Fall through to TIME_BYTES
case TIME_BYTES:
pmmt->u.cb = m_dwByteCount;
}
return MMSYSERR_NOERROR;
}
HRESULT WaveStreamContext::Open(DeviceContext *pDeviceContext, LPWAVEOPENDESC lpWOD, DWORD dwFlags)
{
HRESULT Result;
Result = StreamContext::Open(pDeviceContext,lpWOD,dwFlags);
if (FAILED(Result))
{
return Result;
}
if (m_WaveFormat.wBitsPerSample == 8)
{
if (m_WaveFormat.nChannels == 1)
{
m_SampleType = PCM_TYPE_M8;
m_SampleSize = 1;
}
else
{
m_SampleType = PCM_TYPE_S8;
m_SampleSize = 2;
}
}
else
{
if (m_WaveFormat.nChannels == 1)
{
m_SampleType = PCM_TYPE_M16;
m_SampleSize = 2;
}
else
{
m_SampleType = PCM_TYPE_S16;
m_SampleSize = 4;
}
}
SetRate(0x10000);
int i;
for (i=0;i<OUTCHANNELS;i++)
{
m_PrevSamp[i] = 0;
m_CurrSamp[i] = 0;
}
m_CurrT = 0x200; // Initializing to this ensures we get the 1st sample.
return S_OK;
}
DWORD WaveStreamContext::GetRate(DWORD *pdwMultiplier)
{
*pdwMultiplier = m_dwMultiplier;
return MMSYSERR_NOERROR;
}
DWORD StreamContext::Run()
{
m_bRunning=TRUE;
if (m_lpCurrData)
{
m_pDeviceContext->StreamReadyToRender(this);
}
return MMSYSERR_NOERROR;
}
DWORD StreamContext::Stop()
{
m_bRunning=FALSE;
return MMSYSERR_NOERROR;
}
DWORD StreamContext::Reset()
{
AddRef();
// Stop stream for now.
Stop();
m_lpWaveHdrCurrent = NULL;
m_lpCurrData = NULL;
m_lpCurrDataEnd = NULL;
m_dwByteCount = 0;
m_dwLoopCount = 0;
LPWAVEHDR lpHdr;
while (m_lpWaveHdrHead)
{
lpHdr = m_lpWaveHdrHead;
m_lpWaveHdrHead = lpHdr->lpNext;
if (m_lpWaveHdrHead==NULL)
{
m_lpWaveHdrTail=NULL;
}
ReturnBuffer(lpHdr);
}
Release();
return MMSYSERR_NOERROR;
}
DWORD StreamContext::ForceSpeaker (BOOL bForceSpeaker)
{
// Normalize to 0 or 1
bForceSpeaker = (bForceSpeaker!=0);
if (bForceSpeaker==m_bForceSpeaker)
{
return MMSYSERR_NOERROR;
}
m_bForceSpeaker = bForceSpeaker;
return g_pHWContext->ForceSpeaker(bForceSpeaker);
}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -