亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? 用matlab編的神經(jīng)網(wǎng)絡(luò)程序.txt

?? 用matlab編的神經(jīng)網(wǎng)絡(luò)程序
?? TXT
字號(hào):
用matlab編的神經(jīng)網(wǎng)絡(luò)程序
一、
% bp.m - Implementation of backpropagation algorithm
% (C) copyright 2001 by Yu Hen Hu
% created: 3/17/2001
% call bpconfig.m, cvgtest.m, bpdisplay.m, bptest.m
% rsample.m, randomize.m, actfun.m, actfunp.m
% partunef.m
% modified: 12/10/2003 handle case when testing file has no label

clear all, 

bpconfig; % configurate the MLP network and learning parameters.

% BP iterations begins
while not_converged==1,
  % start a new epoch
% Randomly select K training samples from the training set.
[train,ptr,train0]=rsample(train0,K,Kr,ptr); % train is K by M+N
z{1}=(train(:,1:M))'; % input sample matrix M by K
d=train(:,M+1:MN)'; % corresponding target value N by K

% Feed-forward phase, compute sum of square errors 
for l=2:L, % the l-th layer
u{l}=w{l}*[ones(1,K);z{l-1}]; % u{l} is n(l) by K
z{l}=actfun(u{l},atype(l));
end
error=d-z{L}; % error is N by K
E(t)=sum(sum(error.*error));

% Error back-propagation phase, compute delta error 
delta{L}=actfunp(u{L},atype(L)).*error; % N (=n(L)) by K
if L>2,
for l=L-1:-1:2,
delta{l}=(w{l+1}(:,2:n(l)+1))'*delta{l+1}.*actfunp(u{l},atype(l));
end
end

% update the weight matrix using gradient, momentum and random perturbation
for l=2:L,
dw{l}=alpha*delta{l}*[ones(1,K);z{l-1}]'+...
mom*dw{l}+randn(size(w{l}))*0.005;
w{l}=w{l}+dw{l};
end

% display the training error
bpdisplay;

% Test convergence to see if the convergence condition is satisfied, 
cvgtest;
  t = t + 1; % increment epoch count
end % while loop

disp('Final training results:')
if classreg==0,
[Cmat,crate]=bptest(wbest,tune,atype),
elseif classreg==1,
SS=bptestap(wbest,tune,atype),
end

if testys==1,
disp('Apply trained MLP network to the testing data. The results are: ');
if classreg==0,
[Cmat,crate]=bptest(wbest,test0,atype),
elseif classreg==1,
[SS,out]=bptestap(wbest,test0,atype);
figure(2),clf,plot(test0,out),title('output of testing results')
end
end

二、
echo on
% LearnER.m - Example of Error Correcting Learning
% copyright (c) 1996-2000 by Yu Hen Hu
% Created: 9/2/96
% Modified: 1/28/2000
% Modified: 9/3/2001 add additional runs of LMS and display weight converge curve
% 
clear all
x=[ 1 1 1 1
0.5 -0.4 1.1 0.7
0.8 0.4 -0.3 1.2];
d=[1 0 0 1];
w=zeros(3,1);
weight=[];
eta=.01;
echo off; pause
for n=1:4,
y(n) = w'*x(:,n);
e(n) = d(n) - y(n);
w=w+eta*e(n)*x(:,n);
weight=[weight w];
['iteration #' int2str(n) ':']
weight
pause
end
for m=1:499,
x0=randomize(x')'; % change the order of presentation of x
for n=1:4,
y(n) = w'*x0(:,n);
e(n) = d(n) - y(n);
w=w+eta*e(n)*x0(:,n);
weight=[weight w];
end
end
figure(1),
subplot(311),plot([1:size(weight,2)],weight(1, ),ylabel('w0')
title('convergence curve of the weights')
subplot(312),plot([1:size(weight,2)],weight(2, ),ylabel('w1')
subplot(313),plot([1:size(weight,2)],weight(3, ),ylabel('w2')

echo on
% Batched mode LS solution
R = x*x'
rho=sum((x*diag(d))')'
w_ls = inv(R)*rho

error = d - w_ls'*x;
ernorm = error*error'
echo off

三、

%perceptron.m - perceptron learning algorithm
% INput: train(:,1:M) - pattern train(:,M+1) - target
% Output: weight vector w=[w0 w1 ... wM], w0: bias
% actual output vector y
% Need to call m-file routine: datasepf.m, sline.m
% copyright (C) 1996-2001 by Yu Hen Hu
% Modified: 2/9/2000, 2/3/2001
% K2: # of training samples
% M: feature space dimension

clear all, clf

gdata=input('Enter 0 to load a data file, Return to generate separable data: ');
if isempty(gdata)|gdata~=0,
% generate random training data
K2=input('number of training samples = ');
[orig,slope]=datasepf(K2); % slope is the slope of separating plane
% that has the formula: y = slope*x + 0.5*(1-slope)
else
disp('enter the data matrix, row by row, [x1 .. xN t]');
  orig=input(' start from class 1, followed by class 0: ');
end
[Km,Kn]=size(orig);
M=Kn-1; % number of inputs
K0=sum([orig(:,Kn)==0]); K1=Km-K0; K2=K0+K1;% # of targets = 0 and 1 

mdisplay=10; % # of displaying hyperplane before checking for stopping 

% Initial hyperplane
% w=[rand(1,M) 0]; % initial random weights
% The initial hyperplane can be estimated as a hyperplane separating
% a pair of data sample with different labels
% in orig, this is the first and the last data sample since there are
% only two classes and sorted according to class labels
% the separating hyperplane of two points a and b 
% has the normal vector [-0.5(|b|^2-|a|^2) b-a]
wa=orig(1,1:M); wb=orig(K2,1:M);
wmag=0.5*(wb*wb'-wa*wa');
wunit=wb-wa;
w=[-wmag wunit(1) wunit(2)];

figure(1)
subplot(1,2,2),plot(orig(1:K1,1),orig(1:K1,2),'*',orig(K1+1:K2,1),orig(K1+1:K2,2),'o')
axis('square');
v=axis;
[lx,ly]=sline(w,v);
subplot(1,2,1),plot(orig(1:K1,1),orig(1:K1,2),'*',...
orig(K1+1:K2,1),orig(K1+1:K2,2),'o',lx,ly)
axis('square');
title('Initial hyperplane')
converged=0;

% 0 < eta < 1/x(k)_max.
etamax=sqrt(max(orig(:,1).*orig(:,1)+orig(:,2).*orig(:,2)));
eta=input(['0 < eta < ' num2str(etamax) ', Enter eta = '])
epoch=0;
while converged==0, % not converged yet
train=randomize(orig);
for i=1:K2,
y(i)=0.5*(1+sign(w*[1;train(i,1:M)']));
w=w+eta*(train(i,M+1)-y(i))*[1 train(i,1:M)];
[lx,ly]=sline(w,v);
subplot(1,2,2),plot(orig(1:K1,1),orig(1:K1,2),'*g',...
orig(K1+1:K2,1),orig(K1+1:K2,2),'og',lx,ly,'-',...
train(i,1),train(i,2),'sr');
axis('square');
pause(0.1)
drawnow
end % for loop
epoch=epoch+1;
if sum(abs(train(:,M+1)-y'))==0, % check if converged
converged=1;
end
if rem(epoch,mdisplay)==0,
converged=input('type 1 to terminate, Return to continue : ')
if isempty(converged),
converged=0;
end
end
if converged==1,
[lx,ly]=sline(w,v);
subplot(1,2,2),plot(orig(1:K1,1),orig(1:K1,2),'*',...
orig(K1+1:K2,1),orig(K1+1:K2,2),'o',lx,ly)
axis('square');
title('final hyperplane location')
end
end % while loop


以下是另一個(gè)BP程序
Here input P and targets T define a simple function which 
we can plot: 

p = [0 1 2 3 4 5 6 7 8]; 
t = [0 0.84 0.91 0.14 -0.77 -0.96 -0.28 0.66 0.99]; 
plot(p,t,'o') 

Here NEWFF is used to create a two layer feed forward network. 
The network will have an input (ranging from 0 to 8), followed 
by a layer of 10 TANSIG neurons, followed by a layer with 1 
PURELIN neuron. TRAINLM backpropagation is used. The network 
is also simulated. 

net = newff([0 8],[10 1],{'tansig' 'purelin'},'trainlm'); 
y1 = sim(net,p) 
plot(p,t,'o',p,y1,'x') 

Here the network is trained for up to 50 epochs to a error goal of 
0.01, and then resimulated. 

net.trainParam.epochs = 50; 
net.trainParam.goal = 0.01; 
net = train(net,p,t); 
y2 = sim(net,p) 
plot(p,t,'o',p,y1,'x',p,y2,'*') 

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
色婷婷精品久久二区二区蜜臂av| 91.com视频| 91日韩精品一区| 91老司机福利 在线| 色综合久久天天| 欧美人妇做爰xxxⅹ性高电影| 欧美高清一级片在线| wwwwxxxxx欧美| 国产丝袜欧美中文另类| 亚洲美女一区二区三区| 亚洲国产aⅴ天堂久久| 久久99久久99小草精品免视看| 狠狠色狠狠色综合日日91app| 粉嫩高潮美女一区二区三区 | 亚洲综合色噜噜狠狠| 免费欧美高清视频| 色综合久久综合网97色综合 | 91精品在线麻豆| 中文子幕无线码一区tr| 亚洲444eee在线观看| 国产成人亚洲综合a∨婷婷 | 三级欧美韩日大片在线看| 国内外成人在线| 在线观看视频一区二区欧美日韩| 欧美一区二区三区四区视频| 中文字幕一区二区三区精华液| 亚洲成人第一页| 99国产精品99久久久久久| 日韩欧美高清dvd碟片| 亚洲综合激情另类小说区| 国产999精品久久久久久| 欧美精品乱码久久久久久| 国产精品成人免费在线| 激情丁香综合五月| 69堂亚洲精品首页| 午夜天堂影视香蕉久久| 91首页免费视频| 国产精品国产三级国产专播品爱网| 精一区二区三区| 欧美大片国产精品| 日本不卡123| 欧美一级电影网站| 人人爽香蕉精品| 日韩精品一区二区三区在线播放 | 亚洲成人av一区二区三区| 欧美在线免费播放| 亚洲一区在线视频| 制服视频三区第一页精品| 日本系列欧美系列| 日韩欧美123| 国产成人午夜99999| 欧美—级在线免费片| 91在线播放网址| 亚洲一区在线视频| 精品国产凹凸成av人网站| 精品一区二区av| 国产精品理论在线观看| 91日韩精品一区| 日韩和欧美一区二区三区| 精品少妇一区二区三区在线播放 | 国产精品一区二区三区网站| 久久精品一区四区| 色综合久久久久网| 免费看精品久久片| 国产欧美精品国产国产专区| 99久久99精品久久久久久| 亚洲在线观看免费视频| 欧美不卡视频一区| 一本到一区二区三区| 日本午夜精品一区二区三区电影| 国产欧美精品一区| 5566中文字幕一区二区电影 | 成人av手机在线观看| 五月天中文字幕一区二区| 久久精子c满五个校花| 欧美肥妇bbw| 91视频免费播放| 国产成人午夜精品5599| 日韩精品乱码免费| 亚洲欧美激情视频在线观看一区二区三区 | 一本一道久久a久久精品| 激情综合网av| 亚洲r级在线视频| 亚洲欧美一区二区三区国产精品| 欧美成人精精品一区二区频| 91在线视频免费观看| 国产999精品久久久久久| 精品一区二区免费| 毛片av一区二区| 五月综合激情日本mⅴ| 亚洲综合一区二区精品导航| 亚洲乱码日产精品bd| 国产精品素人视频| 久久久久久久久蜜桃| 久久久午夜精品| 国产午夜亚洲精品理论片色戒 | 国产精品嫩草影院av蜜臀| 2021中文字幕一区亚洲| 欧美精品一区二区三区四区| 欧美xxxx在线观看| 精品免费99久久| 久久综合久久综合久久综合| 久久综合九色综合久久久精品综合| 欧美xingq一区二区| 国产亚洲欧美日韩俺去了| 国产欧美日韩在线| 国产精品国产三级国产有无不卡| 国产精品久久一卡二卡| 亚洲色图色小说| 婷婷丁香久久五月婷婷| 日本 国产 欧美色综合| 国产二区国产一区在线观看| 99精品热视频| 欧美日韩国产色站一区二区三区| 91精品国产高清一区二区三区| 日韩欧美一区二区在线视频| 26uuu精品一区二区| 国产精品久久久久久久第一福利| 亚洲精品成人悠悠色影视| 日本亚洲视频在线| 不卡的av电影在线观看| 欧美日韩夫妻久久| 国产日本欧洲亚洲| 一区二区三区高清不卡| 久久99蜜桃精品| 色欧美片视频在线观看 | 综合色中文字幕| 日本成人在线不卡视频| 波多野结衣一区二区三区| 欧美精品久久久久久久多人混战| 久久久蜜桃精品| 亚洲午夜影视影院在线观看| 国产成人自拍网| 欧美精品xxxxbbbb| ...xxx性欧美| 国产在线一区观看| 欧美一区二区三区人| 日韩理论片在线| 国产69精品久久777的优势| 555www色欧美视频| 亚洲大片精品永久免费| bt欧美亚洲午夜电影天堂| www国产精品av| 日本欧美韩国一区三区| 欧美日韩1234| 亚洲国产精品久久艾草纯爱| 99久久伊人网影院| 国产精品欧美极品| 国产99精品视频| 国产精品久久国产精麻豆99网站| 国产一区二区久久| 精品国产一区二区三区不卡| 美腿丝袜亚洲三区| 日韩一级黄色大片| 久久国产婷婷国产香蕉| 欧美日韩精品一区二区在线播放| 亚洲精品免费看| 欧美色精品在线视频| 香蕉乱码成人久久天堂爱免费| 97se亚洲国产综合自在线| 一卡二卡三卡日韩欧美| 欧美熟乱第一页| 久久国内精品视频| 久久久影视传媒| 91蜜桃视频在线| 午夜视频在线观看一区二区| 欧美精品日韩一区| 国内精品伊人久久久久av一坑 | 成人精品gif动图一区| 成人欧美一区二区三区白人| 91免费国产在线| 视频一区中文字幕| 久久精品亚洲精品国产欧美 | 激情偷乱视频一区二区三区| 久久久久久久久岛国免费| 成人va在线观看| 午夜伦欧美伦电影理论片| 久久综合色天天久久综合图片| 丰满白嫩尤物一区二区| 天天色天天操综合| 日本一区二区三区国色天香| 欧美性感一区二区三区| 国产美女视频91| 亚洲午夜激情网站| 国产精品无圣光一区二区| 欧美日韩国产片| 成人一区二区三区在线观看| 五月天国产精品| 亚洲精品中文在线| 国产亚洲欧洲997久久综合| 精品视频资源站| 97se亚洲国产综合自在线不卡| 久久99精品久久只有精品| 亚洲国产裸拍裸体视频在线观看乱了| 日韩精品在线一区| 制服丝袜在线91| 欧美色综合网站| 在线免费视频一区二区| 99精品视频在线观看免费| 成人丝袜18视频在线观看|