亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? ml.hlp

?? 是一個經濟學管理應用軟件 很難找的 但是經濟學學生又必須用到
?? HLP
?? 第 1 頁 / 共 3 頁
字號:
algorithm used to maximize the likelihood function.  For {cmd:technique(nr)},
{cmd:vce(native)} is a synonym for {cmd:vce(oim)}; and for
{cmd:technique(bhhh)}, {cmd:vce(native)} is a synonym for {cmd:vce(opg)}.
{cmd:vce(native)} is not allowed when switching optimization techniques.


{title:Options for use with ml model in noninteractive mode}

{pstd}
The following additional options are for use with {opt ml model} in
noninteractive mode.  Noninteractive mode is for programmers who use {opt ml}
as a subroutine and want to issue a single command that will carry forth the
estimation from start to finish.

{phang}
{opt maximize} is required.  It specifies noninteractive mode.

{phang}
{opt init(ml_init_args)} sets the initial parameter values.
{it:ml_init_args} are whatever you would type after the {opt ml init} command.

{phang}
{cmd:search(}{opt on}|{opt norescale}|{opt quietly}|{opt off}{cmd:)} specifies whether
{cmd:ml search} is to be used to improve the initial values.  {cmd:search(on)}
is the default and is equivalent to running separately
{cmd:ml search, repeat(0)}.  {cmd:search(norescale)} is equivalent to running
separately {cmd:ml search, repeat(0) norescale}.  {cmd:search(quietly)} is the
same as {cmd:search(on)}, except that it suppresses {cmd:ml search}'s output.
{cmd:search(off)} prevents the calling of {cmd:ml search} altogether.

{phang}
{opt repeat(#)} is {opt ml search}'s {opt repeat()} option.  {cmd:repeat(0)}
is the default.

{phang}
{opt bounds(ml_search_bounds)} specifies the search bounds.  The command
{opt ml model} issues is
"{opt ml search} {it:ml_search_bounds}{opt , repeat(#)}".  Specifying search
bounds is optional.

{phang}
{opt nowarning}, {opt novce}, and {opt score()} are {opt ml maximize}'s
equivalent options.

{phang}{marker noninteractive_maxopts}
{it:maximize_options}:
{opt dif:ficult},
{opt tech:nique(algorithm_spec)},
{opt iter:ate(#)},
[{cmdab:no:}]{opt lo:g},
{opt tr:ace},
{opt grad:ient},
{opt showstep},
{opt hess:ian},
{opt shownr:tolerance},
{opt tol:erance(#)},
{opt ltol:erance(#)},
{opt gtol:erance(#)},
{opt nrtol:erance(#)},
{opt nonrtol:erance},
{opt from(init_specs)}; see {opt maximize}.  These options are seldom used.


{title:Options for use when specifying equations}

{phang}
{opt noconstant} specifies that the equation not include an intercept.

{phang}
{opth "offset(varname:varname_o)"} specifies that the equation be
xb + {it:varname_o}{hline 2}that it include {it:varname_o} with
coefficient constrained to be 1.

{phang}
{opth "exposure(varname:varname_e)"} is an alternative to
{opt offset(varname_o)}; it specifies that the equation be xb +
ln({it:varname_e}).  The equation is to include ln({it:varname_e}) with
coefficient constrained to be 1.


{title:Options for use with ml search}

{phang}
{opt repeat(#)} specifies the number of random attempts that
are to be made to find a better initial-value vector.  The default is
{cmd:repeat(10)}.

{pmore}
{cmd:repeat(0)} specifies that no random attempts be made.
More correctly, {cmd:repeat(0)} specifies that no random attempts be made if
the initial initial-value vector is a feasible starting point.  If it is not,
{opt ml search} will make random attempts, even if you specify
{cmd:repeat(0)}, because it has no alternative.  The {opt repeat()} option
refers to the number of random attempts to be made to improve the initial
values.  When the initial starting value vector is not feasible,
{opt ml search} will make up to 1,000 random attempts to find starting values.
It stops the instant it finds one set of values that works and then moves into
its improve-initial-values logic.

{pmore}
{opt repeat(k)}, {it:k} > 0, specifies the number of random attempts to be made to
improve the initial values.

{phang}
{opt restart} specifies that random actions be taken to obtain
starting values and that the resulting starting values not be a
deterministic function of the current values.  Generally,
you should not specify this option because, with {cmd:restart}, {cmd:ml search}
intentionally does not produce as good a set of starting values as it could.
{opt restart} is included for use by the optimizer when it gets into serious
trouble.  The random actions ensure that the actions of the optimizer and
{cmd:ml search}, working together, do not result in a long, endless loop.
See {bf:[R] ml} for details.

{phang}
{opt norescale} specifies that {opt ml search} not engage in its
rescaling actions to improve the parameter vector.  We do not recommend
specifying this option because rescaling tends to work so well.

{phang}{marker search_maxopts}
{it:maximize_options}:
[{cmdab:no:}]{cmdab:lo:g},
{opt tr:ace};
see {help maximize}.  These options are seldom used.


{title:Option for use with ml plot}

{phang}
{helpb saving_option:saving({it:filename}[, replace])} specifies that the
graph be saved in {it:filename}{cmd:.gph}.


{title:Options for use with ml init}

{phang}
{opt copy} specifies that the list of numbers or the initialization
vector be copied into the initial-value vector by position rather than
by name.

{phang}
{opt skip} specifies that any parameters found in the specified
initialization vector that are not also found in the model be ignored.
The default action is to issue an error message.


{title:Options for use with ml maximize}

{phang}
{opt nowarning} is allowed only with {cmd:iterate(0)}.  {opt nowarning}
suppresses the "convergence not achieved" message.
Programmers might specify {cmd:iterate(0) nowarning} when they have a vector
already containing the final estimates and want {opt ml} to calculate the
variance matrix and post final estimation results.  In that case, specify
{bind:{cmd:init(b) search(off) iterate(0) nowarning nolog}}.

{phang}
{opt novce} is allowed only with {cmd:iterate(0)}.  {opt novce}
substitutes the zero matrix for the variance matrix, which in effect posts
estimation results as fixed constants.

{phang}
{cmd:score(}{it:{help newvar:newvars}} | {it:stub*}{cmd:)}
creates new variables containing the contributions to the score for each
equation and ancillary parameter in the model; see
{bf:[U] 20.15 Obtaining scores}.

{pmore}
If {opt score(newvars)} is specified, the {it:newvars} must contain k
new variables, one for each equation in the model.  If {opt score(stub*)} is
specified, variables named {it:stub}{cmd:1}, {it:stub}{cmd:2}, {it:...}
{it:stub}{cmd:k} are created.

{pmore}
The first variable contains {bind:d(ln L_j)/d(x_j b)}; the second variable
contains {bind:d(ln L_j)/d(ln(alpha))}; and so on.

{phang}
{opt nooutput} suppresses display of the final results.  This is
different from prefixing {opt ml maximize} with {opt quietly} in that the
iteration log is still displayed (assuming that {opt nolog} is not specified).

{phang}
{opt noclear} specifies that after the model has converged, the ml
problem definition not be cleared.  Perhaps you are having convergence
problems and intend to run the model to convergence.  If so, use {opt ml search}
to see if those values can be improved, and then start the estimation again.

{phang}{marker ml_maxopts}
{it:maximize_options}:
{opt dif:ficult},
{opt iter:ate(#)},
[{cmdab:no:}]{opt lo:g},
{opt tr:ace},
{opt grad:ient},
{opt showstep},
{opt hess:ian},
{opt shownr:tolerance},
{opt tol:erance(#)},
{opt ltol:erance(#)},
{opt gtol:erance(#)},
{opt nrtol:erance(#)},
{opt nonrtol:erance}; see {help maximize}.  These options are seldom used.

{phang}
{it:display_options}; see
{help ml##mldisplay:Options for use with ml display}.

{phang}
{it:eform_option}; see
{help ml##mldisplay:Options for use with ml display}.


{title:Option for use with ml graph}

{phang}
{helpb saving_option:saving({it:filename}[, replace])} specifies that
the graph is to be saved in {it:filename}{cmd:.gph}.


{marker mldisplay}{...}
{title:Options for use with ml display}

{phang}
{opt noheader} suppresses the display of the header above the coefficient
table that displays the final log-likelihood value, the number of
observations, and the model significance test.

{phang}
{opt nofootnote} suppresses the display of the footnote below the coefficient
table, which displays a warning if the model fitted did not converge within
the specified number of iterations.  Use {cmd:ml} {cmd:footnote} to display
the warning (1) if you add to the coefficient table using the {cmd:plus}
option or (2) you have your own footnotes and want the warning to be last.

{phang}
{opt level(#)} is the standard confidence-level option.  It
specifies the confidence level, as a percentage, for confidence intervals of the
coefficients.  The default is {cmd:level(95)} or as set by {opt set level};
see {help level}.

{phang}
{opt first} displays a coefficient table reporting results for the
first equation only, and the report makes it appear that the first equation is
the only equation.  This is used by programmers who estimate ancillary
parameters in the second and subsequent equations and who wish to report the values
of such parameters themselves.

{phang}
{opt neq(#)} is an alternative to {opt first}.
{opt neq(#)} displays a coefficient table reporting results for
the first {it:#} equations.  This is used by programmers who estimate ancillary
parameters in the {it:#}+1 and subsequent equations and who wish to report the
values of such parameters themselves.

{phang}
{opt plus} displays the coefficient table, but then rather than ending the
table in a line of dashes, ends it in dashes{c -}plus-sign{c -}dashes.  This
is so that programmers can write additional display code to add more results
to the table and make it appear as if the combined result is one table.
Programmers typically specify {cmd:plus} with options {opt first} or
{opt neq()}.  This option implies {cmd:nofootnote}.

{phang}
{it:eform_option}: {opth "eform(data types:string)"}, {opt eform}, {opt hr},
{opt irr}, {opt or}, and
{opt rrr} display the coefficient table in exponentiated form:
for each coefficient, exp({it:b}) rather than {it:b} is displayed, and standard
errors and confidence intervals are transformed.  Display of the intercept, if
any, is suppressed.  {it:string} is the table header that will be displayed
above the transformed coefficients and must be 11 characters or fewer in
length, for example, {cmd:eform("Odds ratio")}.
The options {opt eform}, {opt hr}, {opt irr}, {opt or}, and {opt rrr}
provide a default {it:string} equivalent to {cmd:"exp(b)"}, {cmd:"Haz.  Ratio"},
{cmd:"IRR"}, {cmd:"Odds Ratio"}, and {cmd:"RRR"}, respectively.  These options may
not be combined.


{title:Examples}

{pstd}
See {bf:[R] ml} for examples.  More examples are available in
{it:{browse "http://www.stata.com/bookstore/mle.html":Maximum Likelihood Estimation with Stata, 2nd edition}}
(Gould, Pitblado, and Sribney 2003){hline 2}available from StataCorp.


{title:Also see}

{psee}
Manual:
{bf:[R] ml}

{psee}
Online:  
{helpb _estimates},
{helpb matrix},
{help maximize},
{helpb ml score},
{helpb mleval},
{helpb nl}{p_end}

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日本一二三四高清不卡| 亚洲成人动漫在线免费观看| 亚洲欧洲制服丝袜| 国产一区二区调教| 欧美日韩视频在线第一区 | 奇米精品一区二区三区四区| 国产高清不卡二三区| 555www色欧美视频| 亚洲制服欧美中文字幕中文字幕| 国产最新精品免费| 日韩一级免费一区| 亚洲一级二级三级| 色综合久久中文综合久久97| 国产性天天综合网| 蜜臀久久99精品久久久久宅男 | 国产成人啪免费观看软件| 在线不卡免费欧美| 亚洲午夜羞羞片| 91福利视频久久久久| 亚洲欧美怡红院| 9色porny自拍视频一区二区| 国产欧美日韩中文久久| 国产在线精品一区二区不卡了 | 国产一区二区三区日韩| 日韩欧美一二三| 久久se精品一区精品二区| 欧美精品123区| 香港成人在线视频| 欧美伊人久久久久久久久影院| 亚洲九九爱视频| 91美女福利视频| 亚洲天堂福利av| 91福利精品视频| 亚洲大片精品永久免费| 在线成人av影院| 日本女优在线视频一区二区| 91精品欧美一区二区三区综合在| 香蕉乱码成人久久天堂爱免费| 欧美精品一级二级三级| 亚洲成人动漫一区| 91一区二区在线| 日本伊人色综合网| 欧美高清视频一二三区| 亚洲6080在线| 欧美成人猛片aaaaaaa| 亚洲一区二区综合| 99久久精品免费看| 亚洲激情在线激情| 欧美日韩国产在线播放网站| 午夜伦欧美伦电影理论片| 欧美一区二区三区性视频| 国产成人一区在线| 国产精品女主播在线观看| av电影在线观看完整版一区二区| 亚洲欧美日韩系列| 91精品一区二区三区在线观看| 免费看黄色91| 中文字幕一区二区三区四区| 色婷婷激情一区二区三区| 午夜成人免费视频| 久久综合久色欧美综合狠狠| 国产99久久久久久免费看农村| 国产精品高潮久久久久无| 欧美日韩精品久久久| 国产乱理伦片在线观看夜一区| 国产精品久久夜| 欧美浪妇xxxx高跟鞋交| 国产一区二区伦理片| 亚洲三级久久久| 欧美一级xxx| 95精品视频在线| 麻豆一区二区三区| 亚洲情趣在线观看| 26uuu国产在线精品一区二区| 成人精品视频一区| 日韩**一区毛片| 1区2区3区国产精品| 日韩精品一区二区三区三区免费| 北岛玲一区二区三区四区| 日韩国产在线一| 中文字幕在线观看一区| 日韩精品一区二区在线| 色婷婷av一区二区三区之一色屋| 久久国产精品色| 亚洲一区二区三区中文字幕在线| 国产亚洲成av人在线观看导航| 欧美日韩mp4| 95精品视频在线| 色系网站成人免费| 狠狠色综合日日| 天天色 色综合| 一区二区三区在线免费视频| 久久综合九色综合欧美98| 欧美精品tushy高清| 91高清在线观看| 91亚洲精品久久久蜜桃| 高清国产午夜精品久久久久久| 免费黄网站欧美| 午夜欧美2019年伦理| 亚洲乱码国产乱码精品精小说 | 色婷婷综合视频在线观看| 国产精品69毛片高清亚洲| 久久国产生活片100| 青青草国产成人99久久| 日韩制服丝袜先锋影音| 五月天欧美精品| 日韩高清一区二区| 日本不卡视频在线| 午夜精品久久久久久久久| 亚洲一区二区三区在线看| 亚洲国产日韩a在线播放| 亚洲制服丝袜一区| 午夜激情一区二区| 三级精品在线观看| 日韩精品乱码av一区二区| 日韩和欧美一区二区| 日本在线观看不卡视频| 麻豆精品国产传媒mv男同| 麻豆精品在线视频| 国产一区二区三区久久悠悠色av| 国产精品 日产精品 欧美精品| 国产在线播放一区| 成人深夜福利app| av中文字幕在线不卡| 色爱区综合激月婷婷| 欧美视频一区二区在线观看| 欧美在线观看视频一区二区| 欧美日韩一二三区| 日韩三级中文字幕| 久久精品亚洲国产奇米99| 国产精品狼人久久影院观看方式| 1区2区3区精品视频| 亚洲电影激情视频网站| 日本在线播放一区二区三区| 国产精品影视天天线| av不卡免费在线观看| 在线免费精品视频| 欧美大片免费久久精品三p | 精品日韩欧美一区二区| 国产女同互慰高潮91漫画| 国产精品第五页| 日韩精品欧美精品| 成人污污视频在线观看| 欧美亚洲动漫精品| 久久婷婷国产综合国色天香 | 91福利在线看| 欧美一区二区精品| **性色生活片久久毛片| 偷拍亚洲欧洲综合| 国产麻豆成人传媒免费观看| 一本大道av一区二区在线播放| 日韩欧美国产综合| 成人欧美一区二区三区小说| 日韩和欧美的一区| av一区二区三区| 日韩精品中文字幕一区| 中文字幕一区二区日韩精品绯色| 婷婷开心激情综合| av综合在线播放| 精品日韩99亚洲| 亚洲午夜精品网| 成人在线一区二区三区| 91麻豆精品国产91久久久使用方法| 日本一区二区视频在线| 日本成人中文字幕在线视频| 成人午夜视频在线| 日韩一区二区在线免费观看| 日韩美女视频一区| 国产乱码精品一品二品| 欧美一级在线观看| 亚洲一区在线视频| 国产91色综合久久免费分享| 91精品国产全国免费观看| 亚洲欧洲综合另类| 懂色中文一区二区在线播放| 欧美tk—视频vk| 日本不卡视频一二三区| 欧美午夜精品理论片a级按摩| 国产精品麻豆欧美日韩ww| 韩国成人福利片在线播放| 欧美日韩一区二区在线观看视频| 国产精品另类一区| 国产精品2024| 精品国产乱码久久久久久1区2区 | 欧洲av一区二区嗯嗯嗯啊| 国产欧美精品一区二区色综合| 免费的国产精品| 欧美日韩二区三区| 亚洲va中文字幕| 欧美日本高清视频在线观看| 一区二区三区在线观看网站| 成人高清在线视频| 中文字幕不卡在线播放| 国产一区二区三区久久悠悠色av| 日韩免费高清av| 日韩精品一级中文字幕精品视频免费观看 | 日韩国产精品大片| 欧美精品在线一区二区| 日本午夜精品视频在线观看| 欧美日本在线观看|