亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? apriori.html

?? 數據挖掘中的關聯規則算法
?? HTML
?? 第 1 頁 / 共 5 頁
字號:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"><!-- ===================================================================  File    : apriori.html  Contents: Description of apriori program  Author  : Christian Borgelt==================================================================== --><html><head><title>Apriori Documentation</title></head><!-- =============================================================== --><body bgcolor=white><h1><a name="top">Apriori</a></h1><h3>Finding Association Rules/Hyperedges with the Apriori Algorithm</h3><!-- =============================================================== --><p><img src="line.gif" alt="" height=7 width=704></p><h3>Contents</h3><ul type=disc><li><a href="#intro">Introduction</a></li><li><a href="#terms">Support and Confidence</a>    <ul type=circle>    <li><a href="#suppset">Support of an Item Set</a></li>    <li><a href="#confrule">Confidence of an Association Rule</a></li>    <li><a href="#supprule">Support of an Association Rule</a></li>    </ul></li><li><a href="#target">Target Types</a>    <ul type=circle>    <li><a href="#assrules">Association Rules</a></li>    <li><a href="#itemsets">Frequent Item Sets</a></li>    <li><a href="#closed">Closed Item Sets</a></li>    <li><a href="#maximal">Maximal Item Sets</a></li>    <li><a href="#hyperedges">Association Hyperedges</a></li>    </ul></li><li><a href="#select">Extended Rule Selection</a>    <ul type=circle>    <li><a href="#diff">        Absolute Confidence Difference to Prior</a></li>    <li><a href="#quotient">        Difference of Confidence Quotient to 1</a></li>    <li><a href="#improve">        Absolute Difference of Improvement Value to 1</a></li>    <li><a href="#info">        Information Difference to Prior</a></li>    <li><a href="#chi2">        Normalized chi<sup>2</sup> Measure</a></li>    <li><a href="#behavior">        Selection Behavior of the Measures</a></li>    <li><a href="#appear">Item Appearances</a></li>    </ul></li><li><a href="#select">Extended Item Set Selection</a>    <ul type=circle>    <li><a href="#logquot">        Binary Logarithm of Support Quotient</a></li>    <li><a href="#suppquot">        Difference of Support Quotient to 1</a></li>    </ul></li><li><a href="#tatree">Transaction Prefix Tree</a></li><li><a href="#options">Program Invocation and Options</a></li><li><a href="#input">Input Format</a>    <ul type=circle>    <li><a href="#transin">Format of the Transactions File</a></li>    <li><a href="#appearin">Format of the Item Appearances File</a></li>    </ul></li><li><a href="#output">Output Format</a>    <ul type=circle>    <li><a href="#ruleout">Output Format for Association Rules</a></li>    <li><a href="#setout">Output Format for Frequent Item Sets</a></li>    <li><a href="#edgeout">Output Format for Association Hyperedges</a>        </li>    </ul></li><li><a href="#compopt">Compilation Options</a></li><li><a href="#copying">Copying</a></li><li><a href="#download">Download</a></li><li><a href="#contact">Contact</a></li></ul><!-- =============================================================== --><p><img src="line.gif" alt="" height=7 width=704></p><h3><a name="intro">Introduction</a></h3><p>Association rule induction is a powerful method for so-called<i>market basket analysis</i>, which aims at finding regularities inthe shopping behavior of customers of supermarkets, mail-order companiesand the like. With the induction of association rules one tries to findsets of products that are frequently bought together, so that from thepresence of certain products in a shopping cart one can infer (with ahigh probability) that certain other products are present. Suchinformation, expressed in the form of rules, can often be used toincrease the number of items sold, for instance, by appropriatelyarranging the products in the shelves of a supermarket (they may,for example, be placed adjacent to each other in order to invite evenmore customers to buy them together) or by directly suggesting itemsto a customer, which may be of interest for him/her.</p><p>An <i>association rule</i> is a rule like "If a customer buys wineand bread, he often buys cheese, too." It expresses an associationbetween (sets of) <i>items</i>, which may be products of a supermarketor a mail-order company, special equipment options of a car, optionalservices offered by telecommunication companies etc. An associationrule states that if we pick a customer at random and find out thathe selected certain items (bought certain products, chose certainoptions etc.), we can be confident, quantified by a percentage, thathe also selected certain other items (bought certain other products,chose certain other options etc.).</p><p>Of course, we do not want just any association rules, we want"good" rules, rules that are "expressive" and "reliable". The standardmeasures to assess association rules are the <i>support</i> and the<i>confidence</i> of a rule, both of which are computed from the<i>support</i> of certain item sets. These notions are discussed<a href="#terms">here</a> in more detail. However, these standardcriteria are often not sufficient to restrict the set of rules tothe interesting ones. Therefore some additional rule evaluationmeasures are considered <a href="#select">here</a>.</p><p>The main problem of association rule induction is that there areso many possible rules. For example, for the product range of asupermarket, which may consist of several thousand different products,there are billions of possible association rules. It is obvious thatsuch a vast amount of rules cannot be processed by inspecting eachone in turn. Therefore efficient algorithms are needed that restrictthe search space and check only a subset of all rules, but, if possible,without missing important rules. One such algorithm is the apriorialgorithm, which was developed by [Agrawal et al. 1993] and whichis implemented in a specific way in my apriori program. A briefdescription of some implementation aspects can be found in thesepapers:</p><ul type=disc><li><b>Induction of Association Rules: Apriori Implementation</b><br>    Christian Borgelt and Rudolf Kruse<br>    <i>15th Conference on Computational Statistics</i>    (Compstat 2002, Berlin, Germany)<br>    Physica Verlag, Heidelberg, Germany 2002<br>    (6 pages)    <a href="http://fuzzy.cs.uni-magdeburg.de/~borgelt/papers/cstat_02.pdf">    cstat_02.pdf</a> (105 kb)    <a href="http://fuzzy.cs.uni-magdeburg.de/~borgelt/papers/cstat_02.ps.gz">    cstat_02.ps.gz</a> (91 kb)</li><li><b>Efficient Implementations of Apriori and Eclat</b><br>    Christian Borgelt.<br>    <i>Workshop of Frequent Item Set Mining Implementations</i>    (FIMI 2003, Melbourne, FL, USA).<br>    (9 pages)    <a href="http://fuzzy.cs.uni-magdeburg.de/~borgelt/papers/fimi_03.pdf">    fimi_03.pdf</a> (304 kb)    <a href="http://fuzzy.cs.uni-magdeburg.de/~borgelt/papers/fimi_03.ps.gz">    fimi_03.ps.gz</a> (197 kb)</li></ul><p>By the way: Earlier versions of my apriori programare incorporated in the well-known data mining tool<a href="http://www.spss.com/Clementine/">Clementine</a>(apriori version 1.8 in Clementine version 5.0, apriori version 2.7 in Clementine version 7.0), available from<a href="http://www.spss.com">SPSS</a>. Newer versions of Clementinestill use my program, but I am not completely sure about the versionnumber of the underlying apriori program.</p><p>Enjoy,<br><a href="http://fuzzy.cs.uni-magdeburg.de/~borgelt/">Christian Borgelt</a></p><table width="100%" border=0 cellpadding=0 cellspacing=0><tr><td width="95%" align=right><a href="#top">back to the top</a></td>    <td width=5></td>    <td><a href="#top"><img src="uparrow.gif" border=0></a></td></tr></table><!-- =============================================================== --><p><img src="line.gif" alt="" height=7 width=704></p><h3><a name="terms">Support and Confidence</a></h3><h4><a name="suppset">Support of an Item Set</a></h4><p>Let T be the set of all transactions under consideration, e.g.,let T be the set of all "baskets" or "carts" of products bought by thecustomers of a supermarket - on a given day if you like. The supportof an item set S is the percentage of those transactions in T whichcontain S. In the supermarket example this is the number of "baskets"that contain a given set S of products, for example S = { bread, wine,cheese }. If U is the set of all transactions that contain all itemsin S, then</p><p>support(S) = (|U| / |T|) *100%,</p><p>where |U| and |T| are the number of elements in U and T,respectively. For example, if a customer buys the setX = { milk, bread, apples, wine, sausages, cheese, onions, potatoes }then S is obviously a subset of X, hence S is in U. If there are 318customers and 242 of them buy such a set U or a similar one thatcontains S, then support(S) = 76.1%.</p><table width="100%" border=0 cellpadding=0 cellspacing=0><tr><td width="95%" align=right><a href="#top">back to the top</a></td>    <td width=5></td>    <td><a href="#top"><img src="uparrow.gif" border=0></a></td></tr></table><!-- =============================================================== --><h4><a name="confrule">Confidence of an Association Rule</a></h4><p>This is the measure used by [Agrawal et al. 1993], the inventors ofthe apriori algorithm, to evaluate association rules. The confidenceof a rule R = "A and B -&gt; C" is the support of the set of all itemsthat appear in the rule divided by the support of the antecedent ofthe rule, i.e.</p><p>confidence(R) = (support({A, B, C}) / support({A, B})) *100%.</p><p>More intuitively, the confidence of a rule is the number of cases inwhich the rule is correct relative to the number of cases in which itis applicable. For example, let R = "wine and bread -&gt; cheese". If acustomer buys wine and bread, then the rule is applicable and it saysthat he/she can be expected to buy cheese. If he/she does not buy wineor does not buy bread or buys neither, than the rule is not applicableand thus (obviously) does not say anything about this customer.</p><p>If the rule is applicable, it says that the customer can be expectedto buy cheese. But he/she may or may not buy cheese, that is, the rulemay or may not be correct. Of course, we are interested in how good therule is, i.e., how often its prediction that the customer buys cheeseis correct. The rule confidence measures this: It states the percentageof cases in which the rule is correct. It computes the percentagerelative to the number of cases in which the antecedent holds, sincethese are the cases in which the rule makes a prediction that can betrue or false. If the antecedent does not hold, then the rule does notmake a prediction, so these cases are excluded.</p><p>With this measure a rule is selected if its confidence exceeds oris equal to a given lower limit. That is, we look for rules that havea high probability of being true, i.e., we look for "good" rules, whichmake correct (or very often correct) predictions. My apriori programalways uses this measure to select association rules. The default valuefor the confidence limit is 80%. It can be changed with the option<tt>-c</tt>.</p><p>In addition to the rule confidence my apriori program lets youselect several other rule evaluation measures, which are explainedbelow, but it will also use rule confidence. If you want to relyentirely on some other measure, you can do so by setting the minimalrule confidence to zero. (Attention: If you have a large number ofitems, setting the minimal rule confidence to zero can result in<i>very</i> high memory consumption.)</p><table width="100%" border=0 cellpadding=0 cellspacing=0><tr><td width="95%" align=right><a href="#top">back to the top</a></td>    <td width=5></td>    <td><a href="#top"><img src="uparrow.gif" border=0></a></td></tr></table><!-- =============================================================== --><h4><a name="supprule">Support of an Association Rule</a></h4><p>The support of rules may cause some confusion, because I use thisterm in a different way than [Agrawal et al. 1993] do. For them, thesupport of a rule "A and B -&gt; C" is the support of the set {A, B, C}.This is fine if rule confidence is the only rule evaluation measure,

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
色婷婷激情综合| 欧美日韩国产乱码电影| 国产一区二区三区久久久| 亚洲成av人片一区二区梦乃| 一区二区三区精品久久久| 亚洲欧美日韩国产综合| 亚洲欧美自拍偷拍色图| 中文字幕日韩一区二区| 亚洲欧洲一区二区三区| 亚洲免费av高清| 一区二区三区四区不卡视频| 亚洲自拍都市欧美小说| 亚洲成人精品一区| 日韩国产精品久久久久久亚洲| 男女男精品网站| 久久91精品久久久久久秒播| 久久草av在线| 国产福利一区二区| 99视频有精品| 欧美视频一区二区| 欧美日高清视频| 日韩一区二区三区三四区视频在线观看| 91精品国产色综合久久不卡电影 | 成人性生交大片| 成人avav影音| 色婷婷av久久久久久久| 欧美日韩精品是欧美日韩精品| 9191精品国产综合久久久久久| 91麻豆精品国产91久久久久久| 欧美一区二区三区白人| 久久嫩草精品久久久久| 中文字幕五月欧美| 婷婷成人综合网| 国产一本一道久久香蕉| 97精品久久久午夜一区二区三区| 在线看日本不卡| 精品日韩在线一区| 1024成人网色www| 日本视频一区二区| 国产1区2区3区精品美女| 色一区在线观看| 欧美一区二区三区四区久久| 久久精品亚洲国产奇米99| 久久精品噜噜噜成人av农村| 国产成人免费在线| 欧美在线观看视频一区二区三区| 欧美一级片在线| 中文字幕在线不卡一区二区三区| 亚洲成人一区二区在线观看| 国产精品中文字幕一区二区三区| 97se狠狠狠综合亚洲狠狠| 欧美日本一区二区| 国产精品狼人久久影院观看方式| 天天影视网天天综合色在线播放| 国产精品99久久久久久似苏梦涵| 色婷婷综合久色| 久久亚洲影视婷婷| 午夜视频在线观看一区二区三区| 国产999精品久久| 欧美一区二区成人6969| 亚洲欧洲成人自拍| 激情深爱一区二区| 欧美性猛交xxxx乱大交退制版| 久久精品欧美一区二区三区不卡| 亚洲一级片在线观看| 成人国产电影网| 欧美一区二区三区婷婷月色| 国产精品国产三级国产aⅴ原创| 日韩国产欧美视频| 国产日产欧产精品推荐色| 五月天网站亚洲| 97国产一区二区| 亚洲精品一区二区在线观看| 同产精品九九九| 99久久精品免费看国产| 久久伊人蜜桃av一区二区| 日韩精品一二区| 在线日韩av片| 国产精品第一页第二页第三页| 国产一区欧美一区| 日韩欧美国产三级电影视频| 亚洲一本大道在线| 成人综合婷婷国产精品久久免费| 日韩三级.com| 日韩影院精彩在线| 欧美伊人精品成人久久综合97 | 亚洲图片一区二区| 不卡一区在线观看| 国产日产亚洲精品系列| 麻豆精品一区二区三区| 这里只有精品免费| 亚洲第一福利一区| 色欧美日韩亚洲| 最新热久久免费视频| 懂色av中文字幕一区二区三区| 26uuu精品一区二区三区四区在线| 久久黄色级2电影| 欧美日韩成人在线| 亚洲va天堂va国产va久| 在线观看视频一区二区| 亚洲女人小视频在线观看| av电影在线不卡| 一区视频在线播放| 97久久超碰国产精品电影| 国产精品高潮久久久久无| 成人开心网精品视频| 国产精品入口麻豆原神| 成人性生交大合| 三级欧美韩日大片在线看| 91久久香蕉国产日韩欧美9色| 亚洲欧美视频一区| 日本韩国精品在线| 亚洲综合视频在线观看| 欧美午夜精品免费| 性久久久久久久| 欧美一级日韩不卡播放免费| 国内久久婷婷综合| 国产欧美日韩综合| 91视频观看视频| 一区二区三区久久| 狠狠色综合播放一区二区| 久久综合一区二区| 粉嫩一区二区三区在线看| 国产精品无遮挡| 色老汉一区二区三区| 亚洲成人午夜电影| 精品久久五月天| 成人午夜在线免费| 亚洲另类在线视频| 欧美精品乱人伦久久久久久| 麻豆久久久久久| 国产精品视频九色porn| 97久久超碰国产精品| 午夜欧美电影在线观看| 日韩三级免费观看| 成人午夜电影小说| 一区二区三区在线观看欧美| 51精品视频一区二区三区| 韩国成人福利片在线播放| 中文字幕一区二区三中文字幕| 在线观看视频一区二区欧美日韩| 麻豆国产欧美日韩综合精品二区| 国产喷白浆一区二区三区| 色婷婷激情综合| 美女任你摸久久| 中文字幕一区日韩精品欧美| 欧美日韩在线播放三区四区| 久久 天天综合| 日韩美女久久久| 日韩欧美一级二级三级久久久| 成人av在线影院| 视频精品一区二区| 国产精品日产欧美久久久久| 欧美日韩一级二级| 成人一道本在线| 国产福利一区二区三区视频在线| 亚洲精品国产成人久久av盗摄| 91精品国产日韩91久久久久久| 高清在线不卡av| 婷婷丁香久久五月婷婷| 国产精品女上位| 欧美一区二区三区四区视频 | 国产精品污www在线观看| 欧美日韩综合在线| 高清不卡一二三区| 日韩国产精品91| 美女视频免费一区| 国产精品传媒视频| 久久综合九色综合97_久久久| 91黄视频在线| 从欧美一区二区三区| 青青草97国产精品免费观看无弹窗版| 亚洲人妖av一区二区| 久久夜色精品国产噜噜av| 欧美日本在线视频| 色天使久久综合网天天| 成人美女视频在线观看18| 久久99精品国产麻豆婷婷| 亚洲一二三四区不卡| 一级中文字幕一区二区| 中文字幕精品一区二区三区精品| 7777精品伊人久久久大香线蕉超级流畅| a在线欧美一区| 高潮精品一区videoshd| 捆绑调教美女网站视频一区| 亚洲综合色区另类av| 国产精品国产三级国产aⅴ入口| 精品国产乱码久久久久久浪潮| 欧美日本一区二区三区| 色综合久久88色综合天天| 日韩精品一区二区在线观看| 欧美顶级少妇做爰| 久久精品视频一区| 精品久久久网站| 日韩一区二区在线看| 91精品欧美久久久久久动漫| 欧美日韩精品免费观看视频 | 亚洲人被黑人高潮完整版| 亚洲国产精品黑人久久久| 久久九九久精品国产免费直播|