?? nnlmarq.m
字號:
function jac = nnlmarq(p,d)
%NNLMARQ Marquardt Backpropagation Learning Rule
%
% (See PURELIN, LOGSIG, TANSIG)
%
% jac = NNLMARQ(P,D)
% P - RxQ matrix of input vectors.
% D - SxQ matrix of sensitivity vectors.
% Returns:
% jac - a partial jacobian matrix.
if nargin ~= 2
error('Wrong number of arguments.');
end
[s,q]=size(d);
[r,q]=size(p);
jac=kron(p',ones(1,s)).*kron(ones(1,r),d');
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -