?? gadspinorderivative.m
字號:
% |% | THE DERIVATIVE OF A SPINOR% |i = unit(e1^(e2/2+e3/3)); %/ % rotation plane n = 16; %/ % number of rotation stepsphi = i*2*pi/n; %/ % rotation angle bivectorR = gexp(-phi/2); %/a = e1-e2+e3; % vector to be rotatedclf; %/draw(i,'y'); %/draw(a,'r'); GAtext(1.1*a,'a'); %/axis off; %/GAview([-30 30]); %/axis([-1.1 1.1 -1.7 0.7 -0.5 2]) %/% |% | Vector a and spinor plane % |GAprompt; %/% |% | Derivative is vector proportional to x.i% |title('constant i, then \partial_t(e^{-i\phi/2} a e^{i\phi/2}) = (a \bullet i) \partial_t\phi'); %/draw(inner(a,phi),'b'); %/axis([-1.1 1.1 -1.7 0.7 -0.5 2]) %/GAprompt; %/% |% | Capable of locally rotating the vector a.% |for j=1:n %/ anow = a; %/ adernow = inner(anow,phi); % derivative formula %/ draw(anow,'r'); %/ draw(adernow,'b'); %/ DrawPolyline({anow-adernow/2,anow+adernow/2},'b'); %/ axis([-1.1 1.1 -1.7 0.7 -0.5 2]) %/ drawnow; %/ a = R*anow/R; %/end %/GAorbiter(-360,10); %/
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -