?? example_280xhirespwm.c
字號(hào):
//###########################################################################
// FILE: Example_280xHiResPWM.c
// TITLE: DSP280x Device HRPWM example
// DESCRIPTION:
//
// This example modifies the MEP control registers to show edge displacement
// due to the HRPWM control extension of the respective ePWM module
// All ePWM1A,2A,3A,4A channels (GPIO0, GPIO2, GPIO4, GPIO6) will have fine edge movement
// due to HRPWM logic
//
// 1. 10MHz PWM, ePWM1A toggle low/high with MEP control on Rising edge
// 10MHz PWM, ePWM1B toggle low/high with NO HRPWM control
//
// 2. 6MHz PWM, ePWM2A toggle low/high with MEP control on Rising edge
// 6MHz PWM, ePWM2B toggle low/high with NO HRPWM control
//
// 3. 3MHz PWM, ePWM3A toggle as high/low with MEP control on Rising edge
// 3MHz PWM, ePWM3B toggle low/high with NO HRPWM control
//###########################################################################
#include "DSP280x_Device.h" // DSP280x Headerfile
#include "DSP280x_EPwm_defines.h" // useful defines for initialization
// Declare your function prototypes here
//---------------------------------------------------------------
void HRPWM1_Config(int);
void HRPWM2_Config(int);
void HRPWM3_Config(int);
// General System nets - Useful for debug
Uint16 i,j, duty, DutyFine, n,update;
Uint32 temp;
void main(void)
{
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP280x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP280x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// For this case, just init GPIO for ePWM1-ePWM4
// For this case just init GPIO pins for ePWM1, ePWM2, ePWM3, ePWM4
// These functions are in the DSP280x_EPwm.c file
InitEPwm1Gpio();
InitEPwm2Gpio();
InitEPwm3Gpio();
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP280x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP280x_DefaultIsr.c.
// This function is found in DSP280x_PieVect.c.
InitPieVectTable();
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP280x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
// For this example, only initialize the ePWM
// Step 5. User specific code, enable interrupts:
update =1;
DutyFine =0;
EALLOW;
SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;
EDIS;
// Some useful Period vs Frequency values for SYSCLKOUT = 60MHz
// Period Frequency
// 1000 60 KHz
// 800 75 KHz
// 600 100 KHz
// 500 120 KHz
// 250 240 KHz
// 200 300 KHz
// 100 600 KHz
// 60 1 MHz
// 50 1.2 MHz
// 25 2.4 MHz
// 20 3 MHz
// 12 5 MHz
// 10 6 MHz
// 9 6.7 MHz
// 8 7.5 MHz
// 7 8.6 MHz
// 6 10 MHz
// 5 12 MHz
//====================================================================
// ePWM and HRPWM register initializaition
//====================================================================
HRPWM1_Config(60); // ePWM1 target, 1 MHz PWM
HRPWM2_Config(100); // ePWM2 target, 600 KHz PWM
HRPWM3_Config(200); // ePWM3 target, 300 KHz PWM
EALLOW;
SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1;
EDIS;
while (update ==1)
{
for(DutyFine =1; DutyFine <256 ;DutyFine ++)
{
// Example, write to the HiRes extension of CMPA
EPwm1Regs.CMPA.half.CMPAHR = DutyFine << 8; // Left shift by 8 to write into MSB bits
EPwm2Regs.CMPA.half.CMPAHR = DutyFine << 8; // Left shift by 8 to write into MSB bits
// Example, 32-bit write to CMPA:CMPAHR
EPwm3Regs.CMPA.all = ((Uint32)EPwm3Regs.CMPA.half.CMP_A << 16) + (DutyFine << 8);
EPwm4Regs.CMPA.all = ((Uint32)EPwm4Regs.CMPA.half.CMP_A << 16) + (DutyFine << 8);
for (i=0;i<10000;i++){} // Dummy delay between MEP changes
}
}
}
void HRPWM1_Config(period)
{
// ePWM1 register configuration with HRPWM
// ePWM1A toggle low/high with MEP control on Rising edge
EPwm1Regs.TBCTL.bit.PRDLD = TB_IMMEDIATE; // set Immediate load
EPwm1Regs.TBPRD = period; // PWM frequency = 1 / period
EPwm1Regs.CMPA.half.CMP_A = period / 2; // set duty 50% initially
EPwm1Regs.CMPA.half.CMPAHR = (1 << 8); // initialize HiRes extension
EPwm1Regs.CMPB = period / 2; // set duty 50% initially
EPwm1Regs.TBPHS.all = 0;
EPwm1Regs.TBCTR = 0;
EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP;
EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // EPWM1 is the Master
EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE;
EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;
EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV1;
EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm1Regs.AQCTLA.bit.ZRO = AQ_CLEAR; // PWM toggle low/high
EPwm1Regs.AQCTLA.bit.CAU = AQ_SET;
EPwm1Regs.AQCTLB.bit.ZRO = AQ_CLEAR;
EPwm1Regs.AQCTLB.bit.CBU = AQ_SET;
EALLOW;
EPwm1Regs.HRCNFG.all = 0x0;
EPwm1Regs.HRCNFG.bit.EDGMODE = HR_REP; //MEP control on Rising edge
EPwm1Regs.HRCNFG.bit.CTLMODE = HR_CMP;
EPwm1Regs.HRCNFG.bit.HRLOAD = HR_CTR_ZERO;
EDIS;
}
void HRPWM2_Config(period)
{
// ePWM2 register configuration with HRPWM
// ePWM2A toggle low/high with MEP control on Rising edge
EPwm2Regs.TBCTL.bit.PRDLD = TB_IMMEDIATE; // set Immediate load
EPwm2Regs.TBPRD = period; // PWM frequency = 1 / period
EPwm2Regs.CMPA.half.CMP_A = period / 2; // set duty 50% initially
EPwm2Regs.CMPA.half.CMPAHR = (1 << 8); // initialize HiRes extension
EPwm2Regs.CMPB = period / 2; // set duty 50% initially
EPwm2Regs.TBPHS.all = 0;
EPwm2Regs.TBCTR = 0;
EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP;
EPwm2Regs.TBCTL.bit.PHSEN = TB_DISABLE; // ePWM2 is the Master
EPwm2Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE;
EPwm2Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;
EPwm2Regs.TBCTL.bit.CLKDIV = TB_DIV1;
EPwm2Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
EPwm2Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
EPwm2Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
EPwm2Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm2Regs.AQCTLA.bit.ZRO = AQ_CLEAR; // PWM toggle low/high
EPwm2Regs.AQCTLA.bit.CAU = AQ_SET;
EPwm2Regs.AQCTLB.bit.ZRO = AQ_CLEAR;
EPwm2Regs.AQCTLB.bit.CBU = AQ_SET;
EALLOW;
EPwm2Regs.HRCNFG.all = 0x0;
EPwm2Regs.HRCNFG.bit.EDGMODE = HR_REP; //MEP control on Rising edge
EPwm2Regs.HRCNFG.bit.CTLMODE = HR_CMP;
EPwm2Regs.HRCNFG.bit.HRLOAD = HR_CTR_ZERO;
EDIS;
}
void HRPWM3_Config(period)
{
// ePWM3 register configuration with HRPWM
// ePWM3A toggle high/low with MEP control on falling edge
EPwm3Regs.TBCTL.bit.PRDLD = TB_IMMEDIATE; // set Immediate load
EPwm3Regs.TBPRD = period; // PWM frequency = 1 / period
EPwm3Regs.CMPA.half.CMP_A = period / 2; // set duty 50% initially
EPwm3Regs.CMPA.half.CMPAHR = (1 << 8); // initialize HiRes extension
EPwm3Regs.CMPB = period / 2; // set duty 50% initially
EPwm3Regs.TBPHS.all = 0;
EPwm3Regs.TBCTR = 0;
EPwm3Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP;
EPwm3Regs.TBCTL.bit.PHSEN = TB_DISABLE; // ePWM2 is the Master
EPwm3Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE;
EPwm3Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;
EPwm3Regs.TBCTL.bit.CLKDIV = TB_DIV1;
EPwm3Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
EPwm3Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
EPwm3Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
EPwm3Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm3Regs.AQCTLA.bit.ZRO = AQ_CLEAR; // PWM toggle low/high
EPwm3Regs.AQCTLA.bit.CAU = AQ_SET;
EPwm3Regs.AQCTLB.bit.ZRO = AQ_CLEAR;
EPwm3Regs.AQCTLB.bit.CBU = AQ_SET;
EALLOW;
EPwm3Regs.HRCNFG.all = 0x0;
EPwm3Regs.HRCNFG.bit.EDGMODE = HR_REP; //MEP control on Rising edge
EPwm3Regs.HRCNFG.bit.CTLMODE = HR_CMP;
EPwm3Regs.HRCNFG.bit.HRLOAD = HR_CTR_ZERO;
EDIS;
}
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -