亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? msp430_day_4_key_demo ver0-10.c

?? 用MSP430F2011實現capacitive touch key 的功能
?? C
字號:
//******************************************************************************
//  MSP430F20x3 Demo - Capacitive Single Touch Sensing 4-Key Demo
//
//  Description: This demo implements a 4-key capacitive single touch detection.
//  The LED indicates the key which is pressed through four different levels of
//  brightness. Key#1 -> 100%, Key#2 -> 75%, Key#3 -> 50%, Key#4 -> 25%.
//  A calibration process is implemented to accommodate for possible variations
//  in VLO frequency. Normal operating mode is LPM3.
//
//  ACLK = VLO ~ 12kHz, MCLK = Calibrated 8MHz / 4 = 2MHz,
//  SMCLK = Calibrated 8MHz
//
//                MSP430F20x3
//             -----------------
//         /|\|              XIN|-
//          | |                 |
//          --|RST          XOUT|-
//            |                 |
//            |             P1.0|---->LED
//            |                 |             ####
//            |             P1.2|----+--------#### Sensor#4
//            |                 |    #        ####
//            |                 |    # R=5.1M
//            |                 |    #        ####
//            |             P1.3|----+--------#### Sensor#3
//            |                 |             ####
//            |                 |
//            |                 |             ####
//            |             P1.4|----+--------#### Sensor#2
//            |                 |    #        ####
//            |                 |    # R=5.1M
//            |                 |    #        ####
//            |             P1.5|----+--------#### Sensor#1
//            |                 |             ####
//
//  Zack Albus
//  Texas Instruments Inc.
//  June 2007
//  Built with IAR Embedded Workbench Version: 3.42A
//******************************************************************************
#include  "msp430x20x3.h"

// Define User Configuration values
// Sensor settings
#define Num_Sen     4                       // Defines number of sensors
#define S_4         (0x04)                  // Sensor 4 P1.2
#define S_3         (0x08)                  // Sensor 3 P1.3
#define S_2         (0x10)                  // Sensor 2 P1.4
#define S_1         (0x20)                  // Sensor 1 P1.5

#define LED         (0x01)                  // P1.0


#define min_KEY_lvl         30              // Defines the min key level threshold usable
#define Sample_Rate         20              // Defines #/sec all sensors are sampled
#define DCO_clks_per_sec    8000000         // Number of DCO clocks per second: 2MHz
                                            // Changes with DCO freq selected!
#define DCO_clks_per_sample     (DCO_clks_per_sec/Sample_Rate)/8
                                            // Clocks per sample cycle /8
                                            // /8 is allows integer usage
                                            // will be *8 in the final calcs
#define LED_pulses_per_sample   5           // Defines LED pulses during each sample
                                            // -number of TACCR0 ints per sample

#define Key_1_on_time     1                 // Defines Key 4 % on
#define Key_2_on_time     10                // Defines Key 3 % on
#define Key_3_on_time     25                // Defines Key 2 % on
#define Key_4_on_time     90                // Defines Key 1 % on

// Global variables for sensing
unsigned int dco_clks_per_vlo;              // Variable used for VLO freq measurement
unsigned int vlo_clks_per_sample;           // Variable that determines vlo clocks per sample

// vlo_clks_per_sample = DCO_clks_per_sample/dco_clks_per_vlo*8
unsigned int vlo_clks_per_LED_pulse;        // Variable that determines vlo clocks per LED pulse
unsigned int LED_on_time[Num_Sen];          // Stores calculated TACCR1 value for each
                                            // key separately. Calculated from
                                            // Key_x_on_time*vlo_clks_per_LED_pulse/100

// Misc Globals
unsigned int base_cnt[Num_Sen];
unsigned int meas_cnt[Num_Sen];
int delta_cnt[Num_Sen];
unsigned char key_press[Num_Sen];
char key_pressed, key_loc, no_key, key_loc_old, key_time_out;
char cycles;
unsigned int timer_count;
unsigned int KEY_lvl = 100;                 // Defines the min count for a "key press"

// System Routines
void Init_Timings_Consts(void);             // Use VLO freq to determine TA values
void measure_count(void);                   // Measures each capacitive sensor

extern unsigned int Measure_VLO_SW(void);   // External function to measure
                                            // speed of the VLO
                                            // (implemented in Measure_VLO_SW.s43)
// Main Function
void main(void)
{
  unsigned int i,j;
  int temp;

  // Configure clock system
  WDTCTL = WDTPW + WDTHOLD;                 // Stop watchdog timer
  dco_clks_per_vlo = Measure_VLO_SW();      // Determine VLO freq for usage
  BCSCTL2 |= DIVM_2;                        // MCLK / 4
  BCSCTL1 = CALBC1_8MHZ;                    // Set DCO to 8MHz
  DCOCTL = CALDCO_8MHZ;                     // MCLK = 8/4 = 2MHz
  BCSCTL3 |= LFXT1S_2;                      // LFXT1 = VLO

  // Configure GPIOs
  P1OUT = 0x00;                             // P1.x = 0
  P1DIR = 0xFF;                             // P1.x = output
  P2OUT = 0x00;
  P2DIR = 0xFF;                             // P2.x = output
  P2SEL = 0x00;                             // No XTAL

  __enable_interrupt();                     // Enable interrupts

  Init_Timings_Consts();
  measure_count();                          // Establish an initial baseline capacitance

  for (i = 0; i<Num_Sen; i++)
    base_cnt[i] = meas_cnt[i];

  for (i=15; i>0; i--)                      // Repeat and average base measurement
  {
    measure_count();
    for (j = 0; j<Num_Sen; j++)
      base_cnt[j] = (meas_cnt[j]+base_cnt[j])/2;
  }

  no_key = 0;

  // Main loop starts here
  while (1)
  {
    key_pressed = 0;                    // Assume no keys are pressed

    measure_count();                    // Measure all sensors

    for (i = 0; i<Num_Sen; i++)
    {
      delta_cnt[i] =  meas_cnt[i] - base_cnt[i];  // Calculate delta: c_change

      // Handle baseline measurment for a base C decrease
      if (delta_cnt[i] < 0)             // If negative: result decreased
      {                                 // below baseline, i.e. cap decreased
          base_cnt[i] = (base_cnt[i]+meas_cnt[i]) >> 1; // Re-average baseline down quickly
          delta_cnt[i] = 0;             // Zero out delta for position determination
      }

      if (delta_cnt[i] > KEY_lvl)       // Determine if each key is pressed per a preset threshold
      {
        key_press[i] = 1;               // Specific key pressed
        key_pressed = 1;                // Any key pressed
        key_loc = i;
      }
      else
        key_press[i] = 0;
    }

    // Handle baseline measurement for a base C increase
    if (!key_pressed)                   // Only adjust baseline up if no keys are touched
    {
      key_time_out = Sample_Rate*3;     // Reset key time out duration
      for (i = 0; i<Num_Sen; i++)
        base_cnt[i] = base_cnt[i] + 1;  // Adjust baseline up, should be slow to
    }                                   // accomodate for genuine changes in sensor C
    else                                // Key pressed
    {
      if (key_loc_old == key_loc)       // same key pressed?
        key_time_out--;
      else
        key_time_out = Sample_Rate*3;   // Reset key time out duration

      key_loc_old = key_loc;

      if (key_time_out == 0)            // After time-out, re-init base and key level
        WDTCTL = WDTHOLD;               // FORCE RESET
    }

    // Dynamically adjust key thresholds
    if (key_pressed && (delta_cnt[key_loc]>>2 > KEY_lvl))
    {
      temp = delta_cnt[key_loc]>>2;
      temp = temp + KEY_lvl;
      temp = temp>>1;
      KEY_lvl = temp;                   // Average result
    }
    else if (!key_pressed)
    {
      for (i = 0; i<Num_Sen; i++)
      {
        if(delta_cnt[i] > min_KEY_lvl)
        {
          temp = delta_cnt[i]>>1;       // Means min key level threshold = %50 of delta measured
          temp = temp + KEY_lvl;        // or = min_KEY_lvl/2
          temp = temp>>1;
          KEY_lvl = temp;               // Average result
          break;
        }
      }
    }

    if (key_pressed)                    // Pulse LED and use defined sample rate
    {
      no_key = Sample_Rate*3;           // Reset ~3 sec delay until slower sample rate is used
      cycles = LED_pulses_per_sample;   // Re-set LED pulse counter
      TACCTL0 = CCIE;
      TACCR0 = vlo_clks_per_LED_pulse;  // Load LED pulse period
      TACCTL1 = CCIE;
      TACCR1 = LED_on_time[key_loc];    // Load LED pulse duty cycle
      P1OUT |= LED;                     // Turn on LED
    }
    else                                // No key is pressed...
    {
      if (no_key == 0)                  // ...~3 sec timeout expired: no key press in ~3secs...
      {
        cycles = 1;                     // Adjust cycles for only one TA delay
        TACCTL0 = CCIE;
        TACCR0 = vlo_clks_per_LED_pulse*LED_pulses_per_sample*5; // Low sample rate to: sample_rate/5 SPS
      }
      else                              // ... still within 3 secs of last detected key press...
      {
        no_key--;                       // Decrement delay
        cycles = LED_pulses_per_sample; // Maintain sample_rate SPS, without LED
        TACCTL0 = CCIE;
        TACCR0 = vlo_clks_per_LED_pulse;
      }
      P1OUT ^= BIT6;                    // Toggle P1.6 (for debug only)
    }

    TACTL = TACLR + TASSEL_1 + MC_1;    // ACLK = VLO, up mode

    LPM3;
  }
} // End Main

// Measure count result (capacitance) of each sensor
// Routine setup for four sensors, not dependent on Num_Sen value!
void measure_count(void)
{
  unsigned char i;
  char active_key;

  TACTL = TASSEL_2+MC_2;                    // SMCLK, cont mode
  for (i = 0; i<Num_Sen; i++)
  {
    active_key = 1 << i+2;                  // define bit location of active key

//******************************************************************************
// Negative cycle
//******************************************************************************
    P1OUT &=~(S_1+S_2+S_3+S_4);             // everything is low
    // Take the active key high to charge the pad
    P1OUT |= active_key;
    // Allow a short time for the hard pull high to really charge the pad
    __no_operation();
    __no_operation();
    __no_operation();
    // Enable interrupts (edge set to low going trigger)
    // set the active key to input (was output high), and start the
    // timed discharge of the pad.
    P1IES |= active_key;                    //-ve edge trigger
    P1IE |= active_key;
    P1DIR &= ~active_key;
    // Take a snaphot of the timer...
    timer_count = TAR;
    LPM0;
    // Return the key to the driven low state, to contribute to the "ground"
    // area around the next key to be scanned.
    P1IE &= ~active_key;                    // disable active key interrupt
    P1OUT &= ~active_key;                   // switch active key to low to discharge the key
    P1DIR |= active_key;                    // switch active key to output low to save power
    meas_cnt[i]= timer_count;
//****************************************************************************
// Positive Cycle
//****************************************************************************
    P1OUT |= (S_1+S_2+S_3+S_4);             // everything is high
    // Take the active key low to discharge the pad
    P1OUT &= ~active_key;
    // Allow a short time for the hard pull low to really discharge the pad
    __no_operation();
    __no_operation();
    __no_operation();
    // Enable interrupts (edge set to high going trigger)
    // set the active key to input (was output low), and start the
    // timed discharge of the pad.
    P1IES &= ~active_key;                   //+ve edge trigger
    P1IE |= active_key;
    P1DIR &= ~active_key;
    // Take a snaphot of the timer...
    timer_count = TAR;
    LPM0;
    // Return the key to the driven low state, to contribute to the "ground"
    // area around the next key to be scanned.
    P1IE &= ~active_key;                    // disable active key interrupt
    P1OUT &= ~active_key;                   // switch active key to low to discharge the key
    P1DIR |= active_key;                    // switch active key to output low to save power
    P1OUT &=~(S_1+S_2+S_3+S_4);             // everything is low
    meas_cnt[i] = (meas_cnt[i] + timer_count) >> 1; // Average the 2 measurements
  }
  TACTL = TACLR;                            // Stop the timer
}

void Init_Timings_Consts(void)
{
//  dco_clks_per_vlo = dco_clks_per_vlo << 1; // x2 for 2MHz DCO
//  dco_clks_per_vlo = dco_clks_per_vlo << 2; // x4 for 4MHz DCO
  dco_clks_per_vlo = dco_clks_per_vlo << 3; // x8 for 8MHz DCO
//  dco_clks_per_vlo = dco_clks_per_vlo << 4; // x16 for 16MHz DCO

  vlo_clks_per_sample = DCO_clks_per_sample/dco_clks_per_vlo*8;
  vlo_clks_per_LED_pulse = vlo_clks_per_sample/LED_pulses_per_sample;

  LED_on_time[0] = Key_1_on_time*vlo_clks_per_LED_pulse/100;
  if(LED_on_time[0] == 0)
    LED_on_time[0] = 1;
  LED_on_time[1] = Key_2_on_time*vlo_clks_per_LED_pulse/100;
  LED_on_time[2] = Key_3_on_time*vlo_clks_per_LED_pulse/100;
  LED_on_time[3] = Key_4_on_time*vlo_clks_per_LED_pulse/100;
}

// Port 1 interrupt service routine
#pragma vector=PORT1_VECTOR
__interrupt void port_1_interrupt(void)
{
  P1IFG = 0;                                // clear flag
  timer_count = TAR - timer_count;          // find the charge/discharge time
  LPM0_EXIT;                                // Exit LPM0 on reti
}

// Timer_A0 interrupt service routine
#pragma vector=TIMERA0_VECTOR
__interrupt void Timer_A0 (void)
{
  cycles--;
  if (cycles > 0)
  {
    if (key_pressed)
      P1OUT |= LED;                         // LED on for TACCR1 time of TA period
  }
  else
  { TACTL = TACLR;
    TACCTL0 = 0;                            // interrupt disabled
    TACCTL1 = 0;                            // interrupt disabled
    LPM3_EXIT;                              // Exit LPM3 on reti
  }
}

// Timer_A1 interrupt service routine
#pragma vector=TIMERA1_VECTOR
__interrupt void Timer_A1 (void)
{
  TACCTL1 &= ~CCIFG;                        // Clear the flag
  P1OUT &= ~LED;                            // LED off for rest of TA period
}

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
在线播放/欧美激情| 视频一区中文字幕| 久久se精品一区二区| 99综合影院在线| 精品动漫一区二区三区在线观看| 亚洲日穴在线视频| 丁香婷婷综合激情五月色| 欧美日精品一区视频| ...av二区三区久久精品| 精品一区二区在线播放| 欧美午夜精品一区| 亚洲丝袜自拍清纯另类| 粉嫩高潮美女一区二区三区| 日韩美一区二区三区| 亚洲成人免费在线观看| 色悠悠久久综合| 国产日韩欧美高清在线| 国产伦精品一区二区三区免费迷 | 欧美精品一区二区久久婷婷| 亚洲综合在线观看视频| 99riav久久精品riav| 欧美国产一区在线| 国产精品一区二区三区四区| 精品国产一区二区三区不卡| 免费成人结看片| 这里只有精品电影| 亚洲sss视频在线视频| 精品污污网站免费看| 亚洲一区影音先锋| 欧美日韩精品一区二区在线播放| 亚洲一区二区三区视频在线| 在线影视一区二区三区| 亚洲午夜久久久久久久久电影网| 欧洲精品中文字幕| 日韩在线a电影| 欧美一级夜夜爽| 日韩成人一级片| 日韩一区二区精品| 久久99精品国产麻豆婷婷洗澡| 精品国产一区二区三区四区四 | 亚洲精品日韩专区silk| 91麻豆精品一区二区三区| 一区二区免费在线| 欧美图片一区二区三区| 日本欧美久久久久免费播放网| 欧美一区二区在线播放| 国产自产视频一区二区三区| 国产亚洲欧洲一区高清在线观看| 成人丝袜18视频在线观看| 国产精品久久久久aaaa| 欧美视频自拍偷拍| 蜜桃传媒麻豆第一区在线观看| 久久久久国产精品人| 91亚洲精品乱码久久久久久蜜桃| 亚洲国产色一区| 久久影院视频免费| 91小视频在线| 久久成人精品无人区| 国产精品网站在线播放| 欧美色图在线观看| 国产综合久久久久久鬼色 | 久久精品日韩一区二区三区| 国产福利一区二区三区视频在线| 亚洲欧美偷拍三级| 日韩一区二区三区在线观看 | 日韩欧美的一区二区| 国产成人综合亚洲网站| 亚洲一区二区三区四区不卡| 精品久久久久久久一区二区蜜臀| 成人免费视频一区二区| 肉色丝袜一区二区| 国产精品盗摄一区二区三区| 欧美精品日韩一区| 成人av在线看| 久久精品国产亚洲5555| 一区二区三区日本| 国产女人水真多18毛片18精品视频| 欧洲av一区二区嗯嗯嗯啊| 国产美女在线观看一区| 日韩国产欧美视频| 玉米视频成人免费看| 国产无遮挡一区二区三区毛片日本| 欧美吞精做爰啪啪高潮| 成人免费视频视频| 国产一区二区三区av电影 | 日韩电影在线免费看| 日韩美女视频一区| 久久久久久久免费视频了| 欧美日韩精品一区二区| av高清不卡在线| 国产99精品视频| 精品一区二区在线观看| 免费国产亚洲视频| 天天色综合天天| 亚洲第一狼人社区| 日韩美女啊v在线免费观看| 国产日韩精品视频一区| 日韩欧美国产三级电影视频| 欧美日韩国产综合一区二区| 色先锋aa成人| 91麻豆国产福利精品| 91亚洲国产成人精品一区二区三| 国产 日韩 欧美大片| 国产一区二区在线看| 久久91精品久久久久久秒播| 日韩高清一级片| 三级成人在线视频| 日本伊人色综合网| 三级久久三级久久久| 日本不卡高清视频| 奇米在线7777在线精品| 蜜桃av一区二区在线观看 | 日韩国产在线观看| 日韩高清欧美激情| 久久99热99| 精品一区二区三区免费毛片爱| 麻豆精品蜜桃视频网站| 久久er99精品| 国产成人久久精品77777最新版本| 激情综合色播激情啊| 国产精品一品视频| 成人免费高清在线观看| 91丝袜呻吟高潮美腿白嫩在线观看| 91色|porny| 欧美日韩专区在线| 日韩欧美在线影院| 久久久精品蜜桃| 亚洲少妇中出一区| 亚洲va欧美va天堂v国产综合| 天天av天天翘天天综合网| 男女性色大片免费观看一区二区| 九九在线精品视频| 99久久精品国产导航| 欧美中文字幕一区二区三区| 91精品国产综合久久久久久久| 日韩欧美美女一区二区三区| 国产视频一区二区在线观看| 亚洲丝袜精品丝袜在线| 青青草原综合久久大伊人精品优势| 黑人精品欧美一区二区蜜桃| 亚洲国产精品久久人人爱| 中文字幕成人在线观看| 国产亚洲一二三区| 国产精品不卡在线观看| 亚洲欧美一区二区三区极速播放| 午夜精品福利在线| 国产风韵犹存在线视精品| 色婷婷综合久久久中文字幕| 日韩一区二区电影在线| 亚洲欧洲精品一区二区三区| 亚洲成人免费av| 国产精品性做久久久久久| 日本黄色一区二区| 国产校园另类小说区| 午夜av电影一区| 国产91综合一区在线观看| 欧美三级欧美一级| 国产精品视频免费看| 日本免费新一区视频| 一本色道久久综合亚洲aⅴ蜜桃 | 黄一区二区三区| 久久机这里只有精品| 顶级嫩模精品视频在线看| 日韩精品中文字幕一区二区三区| 国产三级精品视频| 天堂精品中文字幕在线| av一区二区久久| 久久综合中文字幕| 天天综合网天天综合色| 91在线云播放| 国产女同性恋一区二区| 毛片基地黄久久久久久天堂| 在线视频你懂得一区二区三区| 日本一区二区不卡视频| 蜜桃视频一区二区三区在线观看| 欧美在线观看视频在线| 最新高清无码专区| 成人免费观看av| 国产视频一区二区在线| 激情综合色丁香一区二区| 在线不卡一区二区| 亚洲一区二区在线免费看| 91麻豆自制传媒国产之光| 国产午夜久久久久| 国产综合久久久久久鬼色 | 欧美久久一二区| 亚洲精品福利视频网站| 波多野结衣欧美| 中文欧美字幕免费| 国产精品亚洲一区二区三区妖精 | 一区二区在线看| 91一区在线观看| 18涩涩午夜精品.www| 99免费精品在线| 亚洲激情网站免费观看| 色婷婷综合在线| 亚洲高清免费观看| 欧美日韩综合一区| 午夜视频在线观看一区二区三区 | 一本大道综合伊人精品热热|