?? ftmcp100.h
字號(hào):
#ifndef FTMCP100_H#define FTMCP100_H//---------------------------------------------------------------------------// Platform Options and Settings//---------------------------------------------------------------------------/** * Since there are different kind of hardware versions, so we define following flag * here to distinguish between various kind of hardware core. */#define CORE_VERSION_1//#define CORE_VERSION_2#if (!defined(CORE_VERSION_1) && !defined(CORE_VERSION_2)) #error "Please define the hardware core version (either CORE_VERSION_1 or CORE_VERSION_2)"#endif/** * The JPEG decoder will run on both RTL platform and FPGA platform. For * the purpose of one unified single JPEG decoder firmware code, we integrate the * codes on both platforms together and define two flags to decide the platform. * But these two flags will be defined in project setting instead within code * body. We just write these flags here for the purpose of reminder. * Don't define these two flags in program. Define them in project settings. *///#define FPGA_PLATFORM//#define RTL_PLATFORM#if (!defined(FPGA_PLATFORM) && !defined(RTL_PLATFORM)) #error "Please define the the target platform (either FPGA_PLATFORM or RTL_PLATFORM)"#endif//---------------------------------------------------------------------------// Platform Options and Settings//---------------------------------------------------------------------------/** * Various kind of #define constants for compiler preprocessor configuration setting of * FTMCP100 media coprocessor. */ // added by Leo for various output controls#ifdef RTL_PLATFORM #define VPE_OUTPUT //#define VPE_DUMP_YUV // to enalbe the dumping of YUV data (mp4.yuv file in RTL simulation)#endif#ifdef CORE_VERSION_2 // In core_version_2 , we can use the auto-increment mechanism for DMA engine, so we set // the following flag to tell the performance difference. #define USING_AUTO_INCREMNET#endif//---------------------------------------------------------------------------//---------------------------------------------------------------------------/** * Various kind of #define constants mainly used for FTMCP100 media coprocessor. */#define CKR_RATIO 0#define VPE 0x90180000#define RTL_DEBUG_OUT(v) *(unsigned int*)VPE=v;/*#ifdef CORE_VERSION_1 #ifdef FPGA_PLATFORM #define BASE_ADDRESS 0x90700000 // used for Test Chip FIE8100 #elif defined(RTL_PLATFORM) #define BASE_ADDRESS 0x90700000 // used for RTL simulation #else #error "Please define the platfrom flags in project setting (either FPGA_PLATFORM or RTL_PLATFORM)" #endif #elif defined(CORE_VERSION_2) #ifdef FPGA_PLATFORM #define BASE_ADDRESS 0x90e10000 // used for newer hardware core #elif defined(RTL_PLATFORM) #define BASE_ADDRESS 0x90710000 // used for RTL simulation #else #error "Please define the platfrom flags in project setting (either FPGA_PLATFORM or RTL_PLATFORM)" #endif#else #error "Please define the hardware core version (either CORE_VERSION_1 or CORE_VERSION_2)"#endif*/typedef struct { #ifdef CORE_VERSION_1 // 10 blocks at most.. and each DMA command set occupies 4 words // so the allocated space requires 4*10*sizeof(unsigned int) // the system DMA memory space under CORE_VERSION_1 architecture // the allocated system DMA memory space requires 4-byte alignment. unsigned int *pSDMA_virt; unsigned int *pSDMA_phy; #endif unsigned char *pCoreBaseAddr; void * pfnDmaMalloc; // The function pointer to user-defined DMA memory allocation function. void * pfnDmaFree; // The function pointer to user-defined DMA free allocation function. unsigned char *outdata[3]; // the output YUV 8-byte aligned buffer (pyhsical address) // ping pong buffer between VLD-DZ Engine and DQ-MC Engine //0000 --- 0400 --- 0800 (10 bolcks + 10 blocks) // since DZAR and QAR require 1KB aligned unsigned short *pingpong_buf[2]; unsigned int *pLDMA; // DMA command buffer's begin address in local memory int buf_descriptor1; // used to select ping pong buffer for VLD output int buf_descriptor2; // used to select buffer between DQ-MC stage and DMA stage (indicated by MCIADDR for DQ-MC engine output) #ifdef USE_INTERNAL_CPU unsigned int *pLDMA_INTERNAL_CPU; // DMA command buffer's begin address in local memory // for moving internal CPU code to embedded CPU #endif } FTMCP100_CODEC;//---------------------------------------------------------------------------//---------------------------------------------------------------------------//--------------- Bank0 ---------------------//#ifdef CORE_VERSION_1 // ping pong buffer between VLD-DZ Engine and DQ-MC Engine //0000 --- 0400 --- 0800 (10 bolcks + 10 blocks) // since DZAR and QAR require 1KB aligned #define PINGPONG_BUFFER_0_ADDR 0x000 #define PINGPONG_BUFFER_1_ADDR 0x800 // DMA_command #define DMA_COMMAND_LOCAL_ADDR 0x0d00#elif defined(CORE_VERSION_2) // ping pong buffer between VLD-DZ Engine and DQ-MC Engine //0000 --- 0400 --- 0800 (10 bolcks + 10 blocks) // since DZAR and QAR require 1KB aligned #define PINGPONG_BUFFER_0_ADDR 0x10000 #define PINGPONG_BUFFER_1_ADDR 0x10800 // DMA_command #define DMA_COMMAND_LOCAL_ADDR 0x10d00#else #error "Please define the hardware core version (either CORE_VERSION_1 or CORE_VERSION_2)"#endif#ifdef USE_INTERNAL_CPU #define DMA_COMMAND_INTERNAL_CPU 0x10f00#endif// vld input buffer for hardware's autobuffer#define VLD_AUTOBUFFER_ADDR 0x500#ifdef CORE_VERSION_2 #define TRANSLATE_LOCAL_MEMORY_BASE_ADDRESS(v) ( (((((unsigned int)v)|0x10000)>>1)&0x0fffffffc) | (((unsigned int)v)&0x03) ) #endif//--------------- Bank1 ---------------------//// storing the pointer of each block in MCU (double buffer)#define CUR_B0 (0x4000) //4000 -- 4280#define CUR_B1 (0x4040) //4000 -- 4280#define CUR_B2 (0x4080) //4000 -- 4280#define CUR_B3 (0x40c0) //4000 -- 4280#define CUR_B4 (0x4100) //4000 -- 4280#define CUR_B5 (0x4140) //4000 -- 4280#define CUR_B6 (0x4180) //4000 -- 4280#define CUR_B7 (0x41c0) //4000 -- 4280#define CUR_B8 (0x4200) //4000 -- 4280#define CUR_B9 (0x4240) //4000 -- 4280// for double buffer's purpose#define STRIDE_MCU 0x280//--------------- Qtable ---------------------//// storing the qval and invqval in local mem (31k~32k)#ifdef CORE_VERSION_1 #define QTBL0 (0x7c00+pCodec->pCoreBaseAddr) //7c00 -- 7cff #define QTBL1 (0x7d00+pCodec->pCoreBaseAddr) //7d00 -- 7dff #define QTBL2 (0x7e00+pCodec->pCoreBaseAddr) //7e00 -- 7eff #define QTBL3 (0x7f00+pCodec->pCoreBaseAddr) //7f00 -- 7fff#elif defined(CORE_VERSION_2) #define QTBL0 (0x17c00+pCodec->pCoreBaseAddr) //7c00 -- 7cff #define QTBL1 (0x17d00+pCodec->pCoreBaseAddr) //7d00 -- 7dff #define QTBL2 (0x17e00+pCodec->pCoreBaseAddr) //7e00 -- 7eff #define QTBL3 (0x17f00+pCodec->pCoreBaseAddr) //7f00 -- 7fff #else #error "Please define the hardware core version (either CORE_VERSION_1 or CORE_VERSION_2)"#endif//--------------- Bank2,3 ---------------------//// storing the huffman table in local mem (32k~36.5k) // the smaller huffman table layout in local mem (32k~36.5k) // Huffman AC Table 0 : 32K ~ 34K (0x8000~0x8800) (512 words, 1024 half-words) // Huffman AC Table 1 : 34K ~ 36K (0x8800~0x9000) (512 words, 1024 half-words) // Huffman DC Table 0 : 36K ~ 36.25K (0x9000~0x9100) (64 words, 128 half-words) // Huffman DC Table 1 : 36.25K ~ 36.5K (0x9100~0x9200) (64 words, 128 half-words)#ifdef CORE_VERSION_1 #define HUFTBL0_AC (0x8000+pCodec->pCoreBaseAddr) //0x8000 -- 0x8800 #define HUFTBL1_AC (0x8800+pCodec->pCoreBaseAddr) //0x8800 -- 0x9000 #define HUFTBL0_DC (0x9000+pCodec->pCoreBaseAddr) //0x9000 -- 0x9100 #define HUFTBL1_DC (0x9100+pCodec->pCoreBaseAddr) //0x9100 -- 0x9200 #elif defined(CORE_VERSION_2) #define HUFTBL0_AC (0x18000+pCodec->pCoreBaseAddr) //0x8000 -- 0x8800 #define HUFTBL1_AC (0x18800+pCodec->pCoreBaseAddr) //0x8800 -- 0x9000 #define HUFTBL0_DC (0x19000+pCodec->pCoreBaseAddr) //0x9000 -- 0x9100 #define HUFTBL1_DC (0x19100+pCodec->pCoreBaseAddr) //0x9100 -- 0x9200#else #error "Please define the hardware core version (either CORE_VERSION_1 or CORE_VERSION_2)"#endif //---------------------------------------------///* added by Leo, zigzag coef order to natural and transposed order */extern const int jpeg_natural_transpozed_order[];//---------------------------------------------------------------------------// DMA Control Registers Structure Definition//---------------------------------------------------------------------------// well, using the strcutre to do register access is possibly platform specific// we improve it later once we are doing the abstraction of register access.#if defined(CORE_VERSION_1) typedef struct { unsigned int *SMaddr; unsigned int *LMaddr; unsigned int BlkWidth; unsigned int Control; unsigned int CCA; unsigned int Status; } MDMA;#elif defined(CORE_VERSION_2) typedef struct { unsigned int *SMaddr; unsigned int *LMaddr; unsigned int BlkWidth; unsigned int Control; unsigned int CCA; unsigned int Status; unsigned int CCA2; unsigned int GRPC; unsigned int GRPS; } MDMA;#else #error "Please define the hardware core version (either CORE_VERSION_1 or CORE_VERSION_2)"#endif//---------------------------------------------------------------------------// Register definition//--------------------------------------------------------------------------- #ifdef CORE_VERSION_1 #define MDMA1 ((volatile MDMA *)(0x10400 + pCodec->pCoreBaseAddr)) #define MCUBR (0x10008 + pCodec->pCoreBaseAddr) #define MECADDR (0x10014 + pCodec->pCoreBaseAddr) // mainly used for setting debugging marker during RTL simulation , note that MECADDR[3:0] is ignored #define MCCTL (0x1001c + pCodec->pCoreBaseAddr) #define MCCADDR (0x10020 + pCodec->pCoreBaseAddr) #define CPSTS (0x10028 + pCodec->pCoreBaseAddr) #define MCUTIR (0x1002c + pCodec->pCoreBaseAddr) #define PYDCR (0x10030 + pCodec->pCoreBaseAddr) #define PUVDCR (0x10034 + pCodec->pCoreBaseAddr) #define QAR (0x10038 + pCodec->pCoreBaseAddr) #define CKR (0x1003c + pCodec->pCoreBaseAddr) #define VADR (0x10044 + pCodec->pCoreBaseAddr) #define BADR (0x1004c + pCodec->pCoreBaseAddr) #define BALR (0x10050 + pCodec->pCoreBaseAddr) #define MCIADDR (0x10058 + pCodec->pCoreBaseAddr) #define VLDCTL (0x1005c + pCodec->pCoreBaseAddr) #define VOP0 (0x10060 + pCodec->pCoreBaseAddr) #define SCODE (0x10068 + pCodec->pCoreBaseAddr) #define VLASTWORD (0x1006c + pCodec->pCoreBaseAddr) #define VLDSTS (0x10074 + pCodec->pCoreBaseAddr) #define ABADR (0x10078 + pCodec->pCoreBaseAddr) #define READ_MCCTL(v) v=*(volatile unsigned long*)MCCTL; #define READ_QAR(v) v=*(volatile unsigned long*)QAR; #define READ_VADR(v) v=*(volatile unsigned long*)VADR; #define READ_BADR(v) v=*(volatile unsigned long*)BADR; #define READ_VOP0(v) v=*(volatile unsigned long*)VOP0; #define READ_CPSTS(v) v=*(volatile unsigned long*)CPSTS; #define READ_BALR(v) v=*(volatile unsigned long*)BALR; #define READ_VLDCTL(v) v=*(volatile unsigned long*)VLDCTL; #define READ_VLASTWORD(v) v=*(volatile unsigned long*)VLASTWORD; #define READ_VLDSTS(v) v=*(volatile unsigned long*)VLDSTS; //ABF clean #define READ_ABADR(v) v=*(volatile unsigned long*)ABADR;
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -