?? svm_train.java
字號(hào):
import java.io.*;
import java.util.*;
class svm_train {
private svm_parameter param; // set by parse_command_line
private svm_problem prob; // set by read_problem
private svm_model model;
private String input_file_name; // set by parse_command_line
private String model_file_name; // set by parse_command_line
private int cross_validation = 0;
private int nr_fold;
private static void exit_with_help()
{
System.out.print(
"Usage: svm-train [options] training_set_file [model_file]\n"
+"options:\n"
+"-s svm_type : set type of SVM (default 0)\n"
+" 0 -- C-SVC\n"
+" 1 -- nu-SVC\n"
+" 2 -- one-class SVM\n"
+" 3 -- epsilon-SVR\n"
+" 4 -- nu-SVR\n"
+"-t kernel_type : set type of kernel function (default 2)\n"
+" 0 -- linear: u'*v\n"
+" 1 -- polynomial: (gamma*u'*v + coef0)^degree\n"
+" 2 -- radial basis function: exp(-gamma*|u-v|^2)\n"
+" 3 -- sigmoid: tanh(gamma*u'*v + coef0)\n"
+"-d degree : set degree in kernel function (default 3)\n"
+"-g gamma : set gamma in kernel function (default 1/k)\n"
+"-r coef0 : set coef0 in kernel function (default 0)\n"
+"-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)\n"
+"-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)\n"
+"-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)\n"
+"-m cachesize : set cache memory size in MB (default 40)\n"
+"-e epsilon : set tolerance of termination criterion (default 0.001)\n"
+"-h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1)\n"
+"-wi weight: set the parameter C of class i to weight*C, for C-SVC (default 1)\n"
+"-v n: n-fold cross validation mode\n"
);
System.exit(1);
}
private void do_cross_validation()
{
int i;
int total_correct = 0;
double total_error = 0;
double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
// random shuffle
for(i=0;i<prob.l;i++)
{
int j = (int)(Math.random()*(prob.l-i));
svm_node[] tx;
double ty;
tx = prob.x[i];
prob.x[i] = prob.x[j];
prob.x[j] = tx;
ty = prob.y[i];
prob.y[i] = prob.y[j];
prob.y[j] = ty;
}
for(i=0;i<nr_fold;i++)
{
int begin = i*prob.l/nr_fold;
int end = (i+1)*prob.l/nr_fold;
int j,k;
svm_problem subprob = new svm_problem();
subprob.l = prob.l-(end-begin);
subprob.x = new svm_node[subprob.l][];
subprob.y = new double[subprob.l];
k=0;
for(j=0;j<begin;j++)
{
subprob.x[k] = prob.x[j];
subprob.y[k] = prob.y[j];
++k;
}
for(j=end;j<prob.l;j++)
{
subprob.x[k] = prob.x[j];
subprob.y[k] = prob.y[j];
++k;
}
if(param.svm_type == svm_parameter.EPSILON_SVR ||
param.svm_type == svm_parameter.NU_SVR)
{
svm_model submodel = svm.svm_train(subprob,param);
double error = 0;
for(j=begin;j<end;j++)
{
double v = svm.svm_predict(submodel,prob.x[j]);
double y = prob.y[j];
error += (v-y)*(v-y);
sumv += v;
sumy += y;
sumvv += v*v;
sumyy += y*y;
sumvy += v*y;
}
System.out.print("Mean squared error = "+error/(end-begin)+"\n");
total_error += error;
}
else
{
svm_model submodel = svm.svm_train(subprob,param);
int correct = 0;
for(j=begin;j<end;j++)
{
double v = svm.svm_predict(submodel,prob.x[j]);
if(v == prob.y[j])
++correct;
}
System.out.print("Accuracy = "+100.0*correct/(end-begin)+"% ("+correct+"/"+(end-begin)+")\n");
total_correct += correct;
}
}
if(param.svm_type == svm_parameter.EPSILON_SVR || param.svm_type == svm_parameter.NU_SVR)
{
System.out.print("Cross Validation Mean squared error = "+total_error/prob.l+"\n");
System.out.print("Cross Validation Squared correlation coefficient = "+
((prob.l*sumvy-sumv*sumy)*(prob.l*sumvy-sumv*sumy))/
((prob.l*sumvv-sumv*sumv)*(prob.l*sumyy-sumy*sumy))+"\n"
);
}
else
System.out.print("Cross Validation Accuracy = "+100.0*total_correct/prob.l+"%\n");
}
private void run(String argv[]) throws IOException
{
parse_command_line(argv);
read_problem();
if(cross_validation != 0)
{
do_cross_validation();
}
else
{
model = svm.svm_train(prob,param);
svm.svm_save_model(model_file_name,model);
}
}
public static void main(String argv[]) throws IOException
{
svm_train t = new svm_train();
t.run(argv);
}
private static double atof(String s)
{
return Double.valueOf(s).doubleValue();
}
private static int atoi(String s)
{
return Integer.parseInt(s);
}
private void parse_command_line(String argv[])
{
int i;
param = new svm_parameter();
// default values
param.svm_type = svm_parameter.C_SVC;
param.kernel_type = svm_parameter.RBF;
param.degree = 3;
param.gamma = 0; // 1/k
param.coef0 = 0;
param.nu = 0.5;
param.cache_size = 40;
param.C = 1;
param.eps = 1e-3;
param.p = 0.1;
param.shrinking = 1;
param.nr_weight = 0;
param.weight_label = new int[0];
param.weight = new double[0];
// parse options
for(i=0;i<argv.length;i++)
{
if(argv[i].charAt(0) != '-') break;
++i;
switch(argv[i-1].charAt(1))
{
case 's':
param.svm_type = atoi(argv[i]);
break;
case 't':
param.kernel_type = atoi(argv[i]);
break;
case 'd':
param.degree = atof(argv[i]);
break;
case 'g':
param.gamma = atof(argv[i]);
break;
case 'r':
param.coef0 = atof(argv[i]);
break;
case 'n':
param.nu = atof(argv[i]);
break;
case 'm':
param.cache_size = atof(argv[i]);
break;
case 'c':
param.C = atof(argv[i]);
break;
case 'e':
param.eps = atof(argv[i]);
break;
case 'p':
param.p = atof(argv[i]);
break;
case 'h':
param.shrinking = atoi(argv[i]);
break;
case 'w':
++param.nr_weight;
{
int[] old = param.weight_label;
param.weight_label = new int[param.nr_weight];
System.arraycopy(old,0,param.weight_label,0,param.nr_weight-1);
}
{
double[] old = param.weight;
param.weight = new double[param.nr_weight];
System.arraycopy(old,0,param.weight,0,param.nr_weight-1);
}
param.weight_label[param.nr_weight-1] = atoi(argv[i-1].substring(2));
param.weight[param.nr_weight-1] = atof(argv[i]);
break;
case 'v':
cross_validation = 1;
nr_fold = atoi(argv[i]);
if(nr_fold < 2)
{
System.err.print("n-fold cross validation: n must >= 2\n");
exit_with_help();
}
break;
default:
System.err.print("unknown option\n");
exit_with_help();
}
}
// determine filenames
if(i>=argv.length)
exit_with_help();
input_file_name = argv[i];
if(i<argv.length-1)
model_file_name = argv[i+1];
else
{
int p = argv[i].lastIndexOf('/');
++p; // whew...
model_file_name = argv[i].substring(p)+".model";
}
}
// read in a problem (in svmlight format)
private void read_problem() throws IOException
{
BufferedReader fp = new BufferedReader(new FileReader(input_file_name));
Vector vy = new Vector();
Vector vx = new Vector();
int max_index = 0;
while(true)
{
String line = fp.readLine();
if(line == null) break;
StringTokenizer st = new StringTokenizer(line," \t\n\r\f:");
vy.addElement(st.nextToken());
int m = st.countTokens()/2;
svm_node[] x = new svm_node[m];
for(int j=0;j<m;j++)
{
x[j] = new svm_node();
x[j].index = atoi(st.nextToken());
x[j].value = atof(st.nextToken());
}
if(m>0) max_index = Math.max(max_index, x[m-1].index);
vx.addElement(x);
}
prob = new svm_problem();
prob.l = vy.size();
prob.x = new svm_node[prob.l][];
for(int i=0;i<prob.l;i++)
prob.x[i] = (svm_node[])vx.elementAt(i);
prob.y = new double[prob.l];
for(int i=0;i<prob.l;i++)
prob.y[i] = atof((String)vy.elementAt(i));
if(param.gamma == 0)
param.gamma = 1.0/max_index;
fp.close();
}
}
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -