?? svm_predict.java
字號(hào):
import java.io.*;
import java.util.*;
class svm_predict {
private static double atof(String s)
{
return Double.valueOf(s).doubleValue();
}
private static int atoi(String s)
{
return Integer.parseInt(s);
}
private static void predict(BufferedReader input, DataOutputStream output, svm_model model) throws IOException
{
int correct = 0;
int total = 0;
double error = 0;
double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
while(true)
{
String line = input.readLine();
if(line == null) break;
StringTokenizer st = new StringTokenizer(line," \t\n\r\f:");
double target = atof(st.nextToken());
int m = st.countTokens()/2;
svm_node[] x = new svm_node[m];
for(int j=0;j<m;j++)
{
x[j] = new svm_node();
x[j].index = atoi(st.nextToken());
x[j].value = atof(st.nextToken());
}
double v = svm.svm_predict(model,x);
if(v == target)
++correct;
error += (v-target)*(v-target);
sumv += v;
sumy += target;
sumvv += v*v;
sumyy += target*target;
sumvy += v*target;
++total;
output.writeBytes(v+"\n");
}
System.out.print("Accuracy = "+(double)correct/total*100+
"% ("+correct+"/"+total+") (classification)\n");
System.out.print("Mean squared error = "+error/total+" (regression)\n");
System.out.print("Squared correlation coefficient = "+
((total*sumvy-sumv*sumy)*(total*sumvy-sumv*sumy))/
((total*sumvv-sumv*sumv)*(total*sumyy-sumy*sumy))+" (regression)\n"
);
}
public static void main(String argv[]) throws IOException
{
if(argv.length != 3)
{
System.err.print("usage: svm-predict test_file model_file output_file\n");
System.exit(1);
}
BufferedReader input = new BufferedReader(new FileReader(argv[0]));
DataOutputStream output = new DataOutputStream(new FileOutputStream(argv[2]));
svm_model model = svm.svm_load_model(argv[1]);
predict(input,output,model);
}
}
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -